lifetime reproductive success
Recently Published Documents


TOTAL DOCUMENTS

307
(FIVE YEARS 92)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Robin S Waples

1. The Wright-Fisher model, which directs how matings occur and how genes are transmitted across generations, has long been a lynchpin of evolutionary biology. This model is elegantly simple, analytically tractable, and easy to implement, but it has one serious limitation: essentially no real species satisfies its many assumptions. With growing awareness of the importance of jointly considering both ecology and evolution in eco-evolutionary models, this limitation has become more apparent, causing many researchers to search for more realistic simulation models. 2. A recently described variation retains most of the Wright-Fisher simplicity but provides greater flexibility to accommodate departures from model assumptions. This generalized Wright-Fisher model relaxes the assumption that all individuals have identical expected reproductive success by introducing a vector of parental weights w that specifies relative probabilities different individuals have of producing offspring. With parental weights specified this way, expectations of key demographic parameters are simple functions of w. This allows researchers to quantitatively predict the consequences of non-Wright-Fisher features incorporated into their models. 3. An important limitation of the Wright-Fisher model is that it assumes discrete generations, whereas most real species are age-structured. Here I show how an algorithm (THEWEIGHT) that implements the generalized Wright-Fisher model can be used to model evolution in age-structured populations with overlapping generations. Worked examples illustrate simulation of seasonal and lifetime reproductive success and show how the user can pick vectors of weights expected to produce a desired level of reproductive skew or a desired Ne/N ratio. Alternatively, weights can be associated with heritable traits to provide a simple, quantitative way to model natural selection. Using THEWEIGHT, it is easy to generate positive or negative correlations of individual reproductive success over time, thus allowing explicit modeling of common biological processes like skip breeding and persistent individual differences. 4. R code is provided to implement basic features of THEWEIGHT and applications described here. However, required coding changes to the Wright-Fisher model are modest, so the real value of the new algorithm is to encourage users to adopt its features into their own or others models.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 69
Author(s):  
Bartłomiej Woźniak ◽  
Michał Zygmunt ◽  
Łukasz Porębski ◽  
Patrycja Woźniak ◽  
Dariusz Anderwald

Poland is the only European country where the Osprey population is declining due to the mortality of adult birds from poaching, which impacts not only single breeding attempts but also the Lifetime Reproductive Success (LRS) of specimens. However, what if there came an extra mortality factor in the moment of the lowest numbers of Osprey, already vulnerable in the country? In the years 2018–2020, we installed 22 trail cameras and five digital cameras (live online video feeds) on the nests. The total failure level observed in cameras (18.5%) was high. We observed, using these cameras, the extra mortality of chicks (10.7% of potentially fledged chicks) and even adult birds by unexpected predation by Northern Goshawk and White-tailed Eagle. This phenomenon is also common in the national population, as we found a total of ten cases of total losses by predators (eight or nine of them were birds of prey), including nests not covered by camera monitoring. The extra adult-predation by Goshawks means an extra drop in LRS. Those adult and chick predations are an example of exceptional catastrophic phenomena, which have been described as the direct cause of the extinction of animal populations throughout history. Only active conservation and stop poaching of the Polish population could stop the decline and save the Polish Ospreys.


2021 ◽  
Author(s):  
◽  
Ellen Irwin

<p>With human impacts like habitat destruction and climate change contributing to range contractions in species, translocations stand out as an important tool for conserving species suffering from these effects. However, an understanding of the life history of many threatened species prior to translocation is often lacking, but critical for translocation success. For example, dispersal away from the release site—particularly when a protected release site is surrounded by unmanaged habitat—can result in translocation failure, and therefore successful translocation practice must include an understanding of a species’ dispersal patterns. I conducted a study examining the breeding biology and post-fledging dispersal of a population of red-crowned parakeets Cyanoramphus novaezelandiae), or kakariki, recently translocated to a mainland sanctuary in Wellington, New Zealand. The sanctuary, ZEALANDIA, is fenced to exclude invasive mammalian predators; however, birds can and do leave. Approximately one-third of juveniles that dispersed outside the sanctuary were killed by predators. Kakariki post-fledging dispersal was male-biased, possibly driven by inbreeding avoidance, and distance dispersed decreased with increasing body condition. Parental age may have also influenced offspring dispersal. In addition, I found that kakariki reproductive success may be affected by age, and estimated lifetime reproductive success was >30 fledglings by age five. Conservation initiatives could work on controlling predators in currently unprotected reserves and around food sources that kakariki targeted, particularly in summer and autumn when many plants are fruiting and recently fledged juveniles are more active. Future translocations should consider selecting younger birds to translocate to take advantage of their high lifetime reproductive success and therefore improve viability of populations.</p>


2021 ◽  
Author(s):  
◽  
Ellen Irwin

<p>With human impacts like habitat destruction and climate change contributing to range contractions in species, translocations stand out as an important tool for conserving species suffering from these effects. However, an understanding of the life history of many threatened species prior to translocation is often lacking, but critical for translocation success. For example, dispersal away from the release site—particularly when a protected release site is surrounded by unmanaged habitat—can result in translocation failure, and therefore successful translocation practice must include an understanding of a species’ dispersal patterns. I conducted a study examining the breeding biology and post-fledging dispersal of a population of red-crowned parakeets Cyanoramphus novaezelandiae), or kakariki, recently translocated to a mainland sanctuary in Wellington, New Zealand. The sanctuary, ZEALANDIA, is fenced to exclude invasive mammalian predators; however, birds can and do leave. Approximately one-third of juveniles that dispersed outside the sanctuary were killed by predators. Kakariki post-fledging dispersal was male-biased, possibly driven by inbreeding avoidance, and distance dispersed decreased with increasing body condition. Parental age may have also influenced offspring dispersal. In addition, I found that kakariki reproductive success may be affected by age, and estimated lifetime reproductive success was >30 fledglings by age five. Conservation initiatives could work on controlling predators in currently unprotected reserves and around food sources that kakariki targeted, particularly in summer and autumn when many plants are fruiting and recently fledged juveniles are more active. Future translocations should consider selecting younger birds to translocate to take advantage of their high lifetime reproductive success and therefore improve viability of populations.</p>


2021 ◽  
Author(s):  
◽  
Ilse Corkery

<p>Some of the key relationships in the life of an organism are interactions with individuals of other species within the community, for example, negative interactions such as predation and competition are well known to shape natural communities. Positive interactions also have well documented influences, such as intertidal seaweed canopies extending the distribution of many organisms to higher tidal heights, by reducing thermal and desiccation stresses. However, investigating interactions and measuring their significance for fitness is notoriously difficult. For example, several groups of fish are known to ‘clean’ other fish species by feeding on their ectoparasites, a mutually beneficial arrangement. However, foraging by cleaners can damage scales of their hosts and this interaction can become parasitic in times of low ectoparasite abundance. Using both field and laboratory data, I investigated factors that influenced the dynamics of an unusual vertebrate association, the cohabitation of tuatara and fairy prions in a burrow. The end goal was to contribute to the understanding of the classification of this association. The fairy prion is a seabird that comes to land only for the breeding season and the tuatara is a burrowing reptile, active primarily at night in a temperate climate. Specifically, I measured the effects that this association had on tuatara thermoregulation, and demonstrated the difficulty in applying that information to categorize a complex interaction. Investigations into the temporal and spatial habitat of the tuatara, and the degree to which this influenced thermal opportunities, revealed that mean tuatara body temperatures were always within mean environmental temperatures. Males and females did not differ in mean body temperature or effectiveness of thermoregulation. Body size did not predict body temperature or cooling rates, but heating rates were influenced, with larger animals heating faster than smaller individuals. The presence of a fairy prion in a burrow increased humidity within the burrow, and tuatara that occupied burrows containing a fairy prion were able to maintain up to 1.8°C higher body temperatures through the night during the austral summer months. Thus, burrow use behaviour and burrow selection had greater influences on tuatara body temperature than an individual’s sex or size. Experimental evidence revealed that tuatara are capable of adjusting their habitat selection behaviour in response to different humidity constraints. More time was spent outside the burrows and tuatara were more active under humid laboratory conditions. Use of the burrow by tuatara almost halved the time that fairy prions spent at the burrow with their chick, indicating that tuatara were having a negative effect on fairy prions’ use of their burrow. There was no evidence to support the fact that fairy prions were gaining any fitness benefits from their association with tuatara. Thus, we cannot call this interaction a commensalism or a mutualism. In certain instances, it may be that this interaction is best classed as a parasitism with the tuatara benefitting from burrow use and easy predation opportunities, to the detriment of the lifetime reproductive success of the fairy prion. In other instances it may simply be a case of competition for a limited resource (a burrow) with the outcome varying depending on the individuals and the circumstances involved. Being able to categorize interactions between species of high conservation value or at least to have an understanding of the costs and benefits associated with the interaction is desirable for conservation purposes, as failure to consider the ecological network within which a threatened species is embedded, may lead to counterproductive management measures. Further, these results can be used to develop future research into how climatic changes in temperature and rainfall may interact with habitat availability to influence the full range of natural outcomes of the tuatara-fairy prion association.</p>


2021 ◽  
Author(s):  
◽  
Ilse Corkery

<p>Some of the key relationships in the life of an organism are interactions with individuals of other species within the community, for example, negative interactions such as predation and competition are well known to shape natural communities. Positive interactions also have well documented influences, such as intertidal seaweed canopies extending the distribution of many organisms to higher tidal heights, by reducing thermal and desiccation stresses. However, investigating interactions and measuring their significance for fitness is notoriously difficult. For example, several groups of fish are known to ‘clean’ other fish species by feeding on their ectoparasites, a mutually beneficial arrangement. However, foraging by cleaners can damage scales of their hosts and this interaction can become parasitic in times of low ectoparasite abundance. Using both field and laboratory data, I investigated factors that influenced the dynamics of an unusual vertebrate association, the cohabitation of tuatara and fairy prions in a burrow. The end goal was to contribute to the understanding of the classification of this association. The fairy prion is a seabird that comes to land only for the breeding season and the tuatara is a burrowing reptile, active primarily at night in a temperate climate. Specifically, I measured the effects that this association had on tuatara thermoregulation, and demonstrated the difficulty in applying that information to categorize a complex interaction. Investigations into the temporal and spatial habitat of the tuatara, and the degree to which this influenced thermal opportunities, revealed that mean tuatara body temperatures were always within mean environmental temperatures. Males and females did not differ in mean body temperature or effectiveness of thermoregulation. Body size did not predict body temperature or cooling rates, but heating rates were influenced, with larger animals heating faster than smaller individuals. The presence of a fairy prion in a burrow increased humidity within the burrow, and tuatara that occupied burrows containing a fairy prion were able to maintain up to 1.8°C higher body temperatures through the night during the austral summer months. Thus, burrow use behaviour and burrow selection had greater influences on tuatara body temperature than an individual’s sex or size. Experimental evidence revealed that tuatara are capable of adjusting their habitat selection behaviour in response to different humidity constraints. More time was spent outside the burrows and tuatara were more active under humid laboratory conditions. Use of the burrow by tuatara almost halved the time that fairy prions spent at the burrow with their chick, indicating that tuatara were having a negative effect on fairy prions’ use of their burrow. There was no evidence to support the fact that fairy prions were gaining any fitness benefits from their association with tuatara. Thus, we cannot call this interaction a commensalism or a mutualism. In certain instances, it may be that this interaction is best classed as a parasitism with the tuatara benefitting from burrow use and easy predation opportunities, to the detriment of the lifetime reproductive success of the fairy prion. In other instances it may simply be a case of competition for a limited resource (a burrow) with the outcome varying depending on the individuals and the circumstances involved. Being able to categorize interactions between species of high conservation value or at least to have an understanding of the costs and benefits associated with the interaction is desirable for conservation purposes, as failure to consider the ecological network within which a threatened species is embedded, may lead to counterproductive management measures. Further, these results can be used to develop future research into how climatic changes in temperature and rainfall may interact with habitat availability to influence the full range of natural outcomes of the tuatara-fairy prion association.</p>


Author(s):  
Anke Kloock ◽  
Lena Peters ◽  
Charlotte Rafaluk-Mohr

In most animals, female investment in offspring production is greater than for males. Lifetime reproductive success (LRS) is predicted to be optimized in females through extended lifespans to maximize reproductive events by increased investment in immunity. Males, however, maximize lifetime reproductive success by obtaining as many matings as possible. In populations consisting of mainly hermaphrodites, optimization of reproductive success may be primarily influenced by gamete and resource availability. Microbe-mediated protection (MMP) is known to affect both immunity and reproduction, but whether sex influences the response to MMP remains to be explored. Here, we investigated the sex-specific differences in survival, behavior, and timing of offspring production between feminized hermaphrodite (female) and male Caenorhabditis elegans following pathogenic infection with Staphylococcus aureus with or without MMP by Enterococcus faecalis. Overall, female survival decreased with increased mating. With MMP, females increased investment into offspring production, while males displayed higher behavioral activity. MMP was furthermore able to dampen costs that females experience due to mating with males. These results demonstrate that strategies employed under pathogen infection with and without MMP are sex dependent.


2021 ◽  
Author(s):  
Bernard J. Le Boeuf

How did the elephant seal survive being driven to the brink of extinction in the nineteenth century? What variables determine the lifetime reproductive success of individual seals? How have elephant seals adapted to tolerate remarkable physiological extremes of nutrition, temperature, asphyxia, and pressure? Answering these questions and many more, this book is the result of the author's 50-year study of elephant seals. The chapters cover a broad range of topics including diving, feeding, migration and reproductive behavior, yielding fundamental information on general biological principles, the operation of natural selection, the evolution of social behavior, the formation of vocal dialects, colony development, and population changes over time. The book will be a valuable resource for graduate students and researchers of marine mammal behavior and reproductive life history as well as for amateur naturalists interested in these fascinating animals.


2021 ◽  
Author(s):  
Nikunj Goel

Heritable variation in traits that enhance dispersal rates can accumulate at population margins by spatial sorting. This mechanism of selection differs from natural selection as evolutionary change can ensue even in the absence of differential lifetime reproductive success. Although evidence suggests that populations are rapidly evolving at margins due to global change pressures, such as invasions and range shifts, we lack a mathematical theory of spatial sorting to understand these evolutionary patterns. To this end, we present an algebraic theorem, or the sorting theorem, to elucidate the nature of selection at margins, which can, in turn, facilitate axiomatic development of spatial sorting theory. The role of the sorting theorem in guiding research in this context is analogous to that of Price's theorem in natural selection theory.


2021 ◽  
Vol 288 (1957) ◽  
pp. 20210579
Author(s):  
Sahas Barve ◽  
Christina Riehl ◽  
Eric L. Walters ◽  
Joseph Haydock ◽  
Hannah L. Dugdale ◽  
...  

Cooperative breeding strategies lead to short-term direct fitness losses when individuals forfeit or share reproduction. The direct fitness benefits of cooperative strategies are often delayed and difficult to quantify, requiring data on lifetime reproduction. Here, we use a longitudinal dataset to examine the lifetime reproductive success of cooperative polygamy in acorn woodpeckers ( Melanerpes formicivorus ), which nest as lone pairs or share reproduction with same-sex cobreeders. We found that males and females produced fewer young per successful nesting attempt when sharing reproduction. However, males nesting in duos and trios had longer reproductive lifespans, more lifetime nesting attempts and higher lifetime reproductive success than those breeding alone. For females, cobreeding in duos increased reproductive lifespan so the lifetime reproductive success of females nesting in duos was comparable to those nesting alone and higher than those nesting in trios. These results suggest that for male duos and trios, reproductive success alone may provide sufficient fitness benefits to explain the presence of cooperative polygamy, and the benefits of cobreeding as a duo in females are higher than previously assumed. Lifetime individual fitness data are crucial to reveal the full costs and benefits of cooperative polygamy.


Sign in / Sign up

Export Citation Format

Share Document