polyhedral projection
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 1)

Author(s):  
Gabriela Kováčová ◽  
Birgit Rudloff

AbstractIn this paper we consider a problem, called convex projection, of projecting a convex set onto a subspace. We will show that to a convex projection one can assign a particular multi-objective convex optimization problem, such that the solution to that problem also solves the convex projection (and vice versa), which is analogous to the result in the polyhedral convex case considered in Löhne and Weißing (Math Methods Oper Res 84(2):411–426, 2016). In practice, however, one can only compute approximate solutions in the (bounded or self-bounded) convex case, which solve the problem up to a given error tolerance. We will show that for approximate solutions a similar connection can be proven, but the tolerance level needs to be adjusted. That is, an approximate solution of the convex projection solves the multi-objective problem only with an increased error. Similarly, an approximate solution of the multi-objective problem solves the convex projection with an increased error. In both cases the tolerance is increased proportionally to a multiplier. These multipliers are deduced and shown to be sharp. These results allow to compute approximate solutions to a convex projection problem by computing approximate solutions to the corresponding multi-objective convex optimization problem, for which algorithms exist in the bounded case. For completeness, we will also investigate the potential generalization of the following result to the convex case. In Löhne and Weißing (Math Methods Oper Res 84(2):411–426, 2016), it has been shown for the polyhedral case, how to construct a polyhedral projection associated to any given vector linear program and how to relate their solutions. This in turn yields an equivalence between polyhedral projection, multi-objective linear programming and vector linear programming. We will show that only some parts of this result can be generalized to the convex case, and discuss the limitations.


2020 ◽  
Vol 9 (4) ◽  
pp. 233 ◽  
Author(s):  
Benjamin Ulmer ◽  
John Hall ◽  
Faramarz Samavati

Geospatial sensors are generating increasing amounts of three-dimensional (3D) data. While Discrete Global Grid Systems (DGGS) are a useful tool for integrating geospatial data, they provide no native support for 3D data. Several different 3D global grids have been proposed; however, these approaches are not consistent with state-of-the-art DGGSs. In this paper, we propose a general method that can extend any DGGS to the third dimension to operate as a 3D DGGS. This extension is done carefully to ensure any valid DGGS can be supported, including all refinement factors and non-congruent refinement. We define encoding, decoding, and indexing operations in a way that splits responsibility between the surface DGGS and the 3D component, which allows for easy transference of data between the 2D and 3D versions of a DGGS. As a part of this, we use radial mapping functions that serve a similar purpose as polyhedral projection in a conventional DGGS. We validate our method by creating three different 3D DGGSs tailored for three specific use cases. These use cases demonstrate our ability to quickly generate 3D global grids while achieving desired properties such as support for large ranges of altitudes, volume preservation between cells, and custom cell aspect ratio.


2016 ◽  
Vol 48 (4) ◽  
pp. 197-210 ◽  
Author(s):  
Paweł Pędzich

Abstract Application of polyhedrons as image surface in cartographic projections has a tradition of more than 200 years. The first maps relying on polyhedrons appeared in the 19th century. One of the first maps which based on an original polyhedral projection using a regular octahedron was constructed by the Californian architect Bernard Cahill in 1909. Other well known polyhedral projections and maps included Buckminster Fuller’s projection and map into icosahedron from 1954 and S. Waterman’s projection into truncated octahedron from 1996, which resulted in the “butterfly” map. Polyhedrons as image surface have the advantage of allowing a continuous image of continents of the Earth with low projection distortion. Such maps can be used for many purposes, such as presentation of tectonic plates or geographic discoveries. The article presents most well known polyhedral maps, describes cartographic projections applied in their preparation, as well as contemporary examples of polyhedral maps. The method of preparation of a polyhedral map and a virtual polyhedral globe is also presented.


Author(s):  
Erika Harrison ◽  
Ali Mahdavi-Amiri ◽  
Faramarz Samavati

2008 ◽  
Vol 138 (2) ◽  
pp. 207-220 ◽  
Author(s):  
C. N. Jones ◽  
E. C. Kerrigan ◽  
J. M. Maciejowski

Sign in / Sign up

Export Citation Format

Share Document