the solution existence
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Min Tao ◽  
Xiao-Ping Zhang

<div>In this paper, we carry out a unified study for L_1 over L_2 sparsity promoting models, which are widely used in the regime of coherent dictionaries for recovering sparse nonnegative/arbitrary signal. First, we provide the exact recovery condition on both the constrained and the unconstrained models for a broad set of signals. Next, we prove the solution existence of these L_{1}/L_{2} models under the assumption that the null space of the measurement matrix satisfies the $s$-spherical section property. Then by deriving an analytical solution for the proximal operator of the L_{1} / L_{2} with nonnegative constraint, we develop a new alternating direction method of multipliers based method (ADMM$_p^+$) to solve the unconstrained model. We establish its global convergence to a d-stationary solution (sharpest stationary) and its local linear convergence under certain conditions. Numerical simulations on two specific applications confirm the superior of ADMM$_p^+$ over the state-of-the-art methods in sparse recovery. ADMM$_p^+$ reduces computational time by about $95\%\sim99\%$ while achieving a much higher accuracy compared to commonly used scaled gradient projection method for wavelength misalignment problem.</div>


2021 ◽  
Author(s):  
Min Tao ◽  
Xiao-Ping Zhang

<div>In this paper, we carry out a unified study for L_1 over L_2 sparsity promoting models, which are widely used in the regime of coherent dictionaries for recovering sparse nonnegative/arbitrary signal. First, we provide the exact recovery condition on both the constrained and the unconstrained models for a broad set of signals. Next, we prove the solution existence of these L_{1}/L_{2} models under the assumption that the null space of the measurement matrix satisfies the $s$-spherical section property. Then by deriving an analytical solution for the proximal operator of the L_{1} / L_{2} with nonnegative constraint, we develop a new alternating direction method of multipliers based method (ADMM$_p^+$) to solve the unconstrained model. We establish its global convergence to a d-stationary solution (sharpest stationary) and its local linear convergence under certain conditions. Numerical simulations on two specific applications confirm the superior of ADMM$_p^+$ over the state-of-the-art methods in sparse recovery. ADMM$_p^+$ reduces computational time by about $95\%\sim99\%$ while achieving a much higher accuracy compared to commonly used scaled gradient projection method for wavelength misalignment problem.</div>


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
N. D. Phuong ◽  
Ho Duy Binh ◽  
Ho Thi Kim Van ◽  
Le Dinh Long

Fractional diffusion on the sphere plays a large role in the study of physical phenomena customs and meteorology and geophysics. In this paper, we examine two types of the sphere problem: the initial value problem and the end value problem. We are interested in focus on the solution existence in a local or global form. In order to overcome difficult evaluations when evaluating, we need some new techniques. The main analytical tool is the use of the Banach fixed point theorem.


Author(s):  
Bohua Sun

For the solution existence condition of the Navier-Stokes equation, we propose a conjecture as follows: "\emph{The Navier-Stokes equation has a solution if and only if the determinant of flow velocity gradient is not zero, namely $\det (\bm \nabla \bm v)\neq 0$.}"


Author(s):  
Bohua Sun

The material derivative is important in continuum physics. This Letter shows that the expression $\frac{d }{dt}=\frac{\partial }{\partial t}+(\bm v\cdot \bm \nabla)$, used in most literature and textbooks, is incorrect. The correct expression $ \frac{d (:)}{dt}=\frac{\partial }{\partial t}(:)+\bm v\cdot [\bm \nabla (:)]$ is formulated. The solution existence condition of Navier-Stokes equation has been proposed from its form-solution, the conclusion is that "\emph{The Navier-Stokes equation has a solution if and only if the determinant of flow velocity gradient is not zero, namely $\det (\bm \nabla \bm v)\neq 0$.}"


Author(s):  
Bohua Sun

The material derivative is important in continuum physics. This Letter shows that the expression $\frac{d }{dt}=\frac{\partial }{\partial t}+(\bm v\cdot \bm \nabla)$, used in most literature and textbooks, is incorrect. The correct expression $ \frac{d (:)}{dt}=\frac{\partial }{\partial t}(:)+\bm v\cdot [\bm \nabla (:)]$ is formulated. The solution existence condition of Navier-Stokes equation has been proposed from its form-solution, the conclusion is that "\emph{The Navier-Stokes equation has solution if and only if the determinant of flow velocity gradient is not zero, namely $\det (\bm \nabla \bm v)\neq 0$.}"


Sign in / Sign up

Export Citation Format

Share Document