quantum measurement process
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 1)

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 555
Author(s):  
Xiao-Liang Qi ◽  
Daniel Ranard

In a quantum measurement process, classical information about the measured system spreads throughout the environment. Meanwhile, quantum information about the system becomes inaccessible to local observers. Here we prove a result about quantum channels indicating that an aspect of this phenomenon is completely general. We show that for any evolution of the system and environment, for everywhere in the environment excluding an O(1)-sized region we call the "quantum Markov blanket," any locally accessible information about the system must be approximately classical, i.e. obtainable from some fixed measurement. The result strengthens the earlier result of Brandão et al. (Nat. comm. 6:7908) in which the excluded region was allowed to grow with total environment size. It may also be seen as a new consequence of the principles of no-cloning or monogamy of entanglement. Our proof offers a constructive optimization procedure for determining the "quantum Markov blanket" region, as well as the effective measurement induced by the evolution. Alternatively, under channel-state duality, our result characterizes the marginals of multipartite states.


Entropy ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 834 ◽  
Author(s):  
Karl-Erik Eriksson ◽  
Kristian Lindgren

We model quantum measurement of a two-level system μ . Previous obstacles for understanding the measurement process are removed by basing the analysis of the interaction between μ and the measurement device on quantum field theory. This formulation shows how inverse processes take part in the interaction and introduce a non-linearity, necessary for the bifurcation of quantum measurement. A statistical analysis of the ensemble of initial states of the measurement device shows how microscopic details can influence the transition to a final state. We find that initial states that are efficient in leading to a transition to a final state result in either of the expected eigenstates for μ , with ensemble averages that are identical to the probabilities of the Born rule. Thus, the proposed scheme serves as a candidate mechanism for the quantum measurement process.


2017 ◽  
Vol 96 (5) ◽  
Author(s):  
Yao Yao ◽  
G. H. Dong ◽  
Xing Xiao ◽  
Mo Li ◽  
C. P. Sun

2015 ◽  
Vol 111 (4) ◽  
pp. 40008 ◽  
Author(s):  
P. Liuzzo-Scorpo ◽  
A. Cuccoli ◽  
P. Verrucchi

2008 ◽  
Vol 06 (supp01) ◽  
pp. 613-619
Author(s):  
FRANCESCO BUSCEMI ◽  
MASAHITO HAYASHI ◽  
MICHAŁ HORODECKI

A quantum measurement process, when non-trivial, is not a closed evolution: the appearance of classical outcomes is usually interpreted as the evidence of some decoherence-like mechanism causing quantum superpositions to degrade into classical mixtures. Such mechanism is due to a net flow of information from the input system (measurement object), through the physical apparatus interacting with the object (measurement probe), into some environment, the latter representing all those degrees of freedom which are not directly accessible by the experimenter. For this reason, the phenomenon of state reduction induced by the measurement process generally entails an irreversible state change. The aim of our contribution is to answer the following questions : how much information a measurement is able to extract? "How much" irreversible is the state reduction due to a particular measurement process? In which way information gain and irreversibility are related?


Sign in / Sign up

Export Citation Format

Share Document