polarized neutron reflectometry
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 16)

H-INDEX

17
(FIVE YEARS 3)

APL Materials ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 011107
Author(s):  
Nan Tang ◽  
Jung-Wei Liao ◽  
Siu-Tat Chui ◽  
Timothy Ziman ◽  
Alexander J. Grutter ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tobias Warnatz ◽  
Fridrik Magnus ◽  
Nanny Strandqvist ◽  
Sarah Sanz ◽  
Hasan Ali ◽  
...  

AbstractThe strength of the interlayer exchange coupling in [Fe/MgO]$$_N$$ N (001) superlattices with 2 ≤ N ≤ 10 depends on the number of bilayer repeats (N). The exchange coupling is antiferromagnetic for all the investigated thicknesses while being nine times larger in a sample with N = 4 as compared to N = 2. The sequence of the magnetic switching in two of the samples (N = 4, N = 8) is determined using polarized neutron reflectometry. The outermost layers are shown to respond at the lowest fields, consistent with having the weakest interlayer exchange coupling. The results are consistent with the existence of quantum well states defined by the thickness of the Fe and the MgO layers as well as the number of repeats (N) in [Fe/MgO]$$ _{N}$$ N (001)superlattices.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2180
Author(s):  
Kazuhiro Akutsu-Suyama ◽  
Hiroshi Kira ◽  
Noboru Miyata ◽  
Takayasu Hanashima ◽  
Tsukasa Miyazaki ◽  
...  

A large background scattering originating from the sample matrix is a major obstacle for fine-structure analysis of a nanometric layer buried in a bulk material. As polarization analysis can decrease undesired scattering in a neutron reflectivity (NR) profile, we performed NR experiments with polarization analysis on a polypropylene (PP)/perhydropolysilazane-derived SiO2 (PDS)/Si substrate sample, having a deep-buried layer of SiO2 to elucidate the fine structure of the nano-PDS layer. This method offers unique possibilities for increasing the amplitude of the Kiessig fringes in the higher scattering vector (Qz) region of the NR profiles in the sample by decreasing the undesired background scattering. Fitting and Fourier transform analysis results of the NR data indicated that the synthesized PDS layer remained between the PP plate and Si substrate with a thickness of approximately 109 Å. Furthermore, the scattering length density of the PDS layer, obtained from the background subtracted data appeared to be more accurate than that obtained from the raw data. Although the density of the PDS layer was lower than that of natural SiO2, the PDS thin layer had adequate mechanical strength to maintain a uniform PDS layer in the depth-direction under the deep-buried condition.


Sign in / Sign up

Export Citation Format

Share Document