faunal variability
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 1)

Paleobiology ◽  
2019 ◽  
Vol 45 (02) ◽  
pp. 235-245 ◽  
Author(s):  
Seth Finnegan ◽  
James G. Gehling ◽  
Mary L. Droser

AbstractRecent excavations of Ediacaran assemblages have revealed striking bed-to-bed variation in diversity–abundance structure, offering potential insight into the ecology and taphonomy of these poorly understood early Metazoan ecosystems. Here we compare faunal variability in Ediacaran assemblages to that of younger benthic assemblages, both fossil and modern. We decompose the diversity of local assemblages into within-collection (α) and among-collection (β) components and show that β diversity in Ediacaran assemblages is unusually high relative to younger assemblages. Average between-bed ecological dissimilarities in the Phanerozoic fossil record are comparable to within-habitat dissimilarities typically observed over meter to kilometer scales in modern benthic marine habitats, but dissimilarities in Ediacaran assemblages are comparable to those typically observed over 10–100 km scales in modern habitats. We suggest that the unusually variable diversity–abundance structure of Ediacaran assemblages is due both to their preservation as near snapshots of benthic communities and to original ecological differences, in particular the paucity of motile taxa and the near lack of predation and infaunalization.


Paleobiology ◽  
1988 ◽  
Vol 14 (1) ◽  
pp. 91-103 ◽  
Author(s):  
Arnold I. Miller

The ability of paleobiologists to draw paleoecological inferences based on spatial faunal variability within a single stratigraphic interval depends ultimately on the spatial resolving power of the fossil record. This paper evaluates the potential spatial resolution of fossil assemblages by examining modern skeletal remains of molluscs on a benthic transect, along which there is a marked decrease in seagrass cover, in Smuggler's Cove, St. Croix, U.S. Virgin Islands. The sampling transect began in a Thalassia-covered area approximately three meters deep, extended into slightly deeper water with lighter seagrass cover, and ended on an open, bioturbated sandy tract at a depth of nearly six meters.Two-way cluster analysis and polar ordination of 37 samples of molluscan remains, taken at 10-meter intervals along the 360-meter transect, reveal patterns of variation that are shown by correlation analyses and consideration of the autecologies of individual species to be related to measured changes in vegetation. There is a transition from dominance primarily by epifaunal gastropods living on seagrass blades to dominance by infaunal, burrowing bivalves as grass cover becomes lighter. Some non-systematic variability exists in faunal distributional patterns within areas where the environment does not vary systematically, but this does not mask the regular faunal transitions related to environmental changes. Correspondence between the dead and live faunas is difficult to ascertain because of the scarcity of live fauna in collected samples.The results suggest that spatial faunal transitions in fossil remains at even the fine scale evaluated in this study are potentially preservable in the fossil record.


Sign in / Sign up

Export Citation Format

Share Document