gene knockout mice
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 38)

H-INDEX

50
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Zhang ◽  
Yaozhen Chen ◽  
Dandan Yin ◽  
Fan Feng ◽  
Qunxing An ◽  
...  

Abstract Background The fate of hematopoietic stem cells (HSCs) is determined by a complex regulatory network that includes both intrinsic and extrinsic signals. In the past decades, many intrinsic key molecules of HSCs have been shown to control hematopoiesis homeostasis. Non-hematopoietic niche cells also contribute to the self-renewal, quiescence, and differentiation of HSCs. Mesenchymal stromal cells (MSCs) have been identified as important components of the niche. However, the regulatory role of MSCs in hematopoiesis has not been fully understood. Methods Caspase-3 and NLRP3 gene knockout mice were generated respectively, and hematopoietic development was evaluated in the peripheral circulation and bone marrow by flow cytometry, colony formation assay, and bone marrow transplantation. Bone-associated MSCs (BA-MSCs) were then isolated from gene knockout mice, and the effect of Caspase-3/NLRP3 deficient BA-MSCs on hematopoiesis regulation was explored in vivo and ex vivo. Results We report that Caspase-3 deficient mice exhibit increased myelopoiesis and an aberrant HSC pool. Ablation of Caspase-3 in BA-MSCs regulates myeloid lineage expansion by altering the expression of hematopoietic retention cytokines, including SCF and CXCL12. Interestingly, NLRP3 gene knockout mice share phenotypic similarities with Caspase-3 deficient mice. Additionally, we found that NLRP3 may play a role in myeloid development by affecting the cell cycle and apoptosis of hematopoietic progenitors. Conclusions Our data demonstrate that the Caspase-3/NLRP3 signaling functions as an important regulator in physiological hematopoiesis, which provides new insights regarding niche signals that influence hematopoiesis regulation in the bone marrow.


2021 ◽  
Author(s):  
Ali Seifinejad ◽  
Almar Neiteler ◽  
Sha Li ◽  
Corinne Pfister ◽  
Rolf Fronczek ◽  
...  

Narcolepsy with cataplexy is a chronic sleep disorder characterized by hypocretin deficiency. The condition is believed to result from autoimmune destruction of hypocretin (HCRT) neurons, although direct evidence is lacking and mere Hcrt gene inactivation causes full-blown narcolepsy in mice. Here we show that the expression of another hypothalamic neuropeptide, QRFP, is lost in mouse models with HCRT cell-ablation, but tends to be even increased in Hcrt gene knockout mice, suggesting that QRFP expression can be used as a proxy for the presence or absence of HCRT neurons. Similar to Hcrt knockout mice, narcolepsy patients show intact hypothalamic QRFP expression, and cerebrospinal fluid levels of QRFP peptide are increased, suggesting their HCRT neurons are intact. We show that the human HCRT gene promoter is methylation-sensitive in vitro, and is hypermethylated in the hypothalamus of patients selectively at a putative PAX5:ETS1 binding site within the proximal HCRT promoter. Ets1-KO mice display downregulated Hcrt expression, while pax5-ets1 knockdown in zebrafish causes decreased hcrt expression, decreased activity and sleep fragmentation, similar to narcolepsy patients. Our results suggest that HCRT neurons are alive, but epigenetically silenced, in the hypothalamus of narcolepsy patients, opening the possibility to reverse or cure narcolepsy.


Author(s):  
Lei-Ning Chen ◽  
Xiao-Yan Fan ◽  
Yi-Tong Liu ◽  
Shao-Qing Chen ◽  
Feng-Yun Xie ◽  
...  

Utilizing microinjection to introduce biological molecules such as DNA, mRNA, siRNA, and proteins into the cell is well established to study oocyte maturation and early embryo development in vitro. However, microinjection is an empirical technology. The cellular survival after microinjection is mainly dependent on the operator, and an experienced operator should be trained for a long time, from several months to years. Optimizing the microinjection to be highly efficient and quickly learned should be helpful for new operators and some newly established laboratories. Here, we combined the tip pipette and piezo-assisted micromanipulator to microinject the oocyte and early embryos at different stages of mouse. The results showed that the survival rate after microinjection was more than 85% for cumulus–oocyte complex, germinal vesicle oocyte, two-cell, and four-cell embryos, and close to 100% for MII oocyte and zygotes. The high-rate survival of microinjection can save many experimental samples. Thus, it should be helpful in studying some rare animal models such as aging and conditional gene knockout mice. Furthermore, our protocol is much easier to learn for new operators, who can usually master the method proficiently after several training times. Therefore, we would like to publicly share this experience, which will help some novices master microinjection skillfully and save many laboratory animals.


Author(s):  
Feng Zhang ◽  
Xiong Zhao ◽  
Runmin Jiang ◽  
Yuying Wang ◽  
Xinli Wang ◽  
...  

Body axial patterning develops via a rostral-to-caudal sequence and relies on the temporal colinear activation of Hox genes. However, the underlying mechanism of Hox gene temporal colinear activation remains largely elusive. Here, with small-molecule inhibitors and conditional gene knockout mice, we identified Jmjd3, a subunit of TrxG, as an essential regulator of temporal colinear activation of Hox genes with its H3K27me3 demethylase activity. We demonstrated that Jmjd3 not only initiates but also maintains the temporal collinear expression of Hox genes. However, we detected no antagonistic roles between Jmjd3 and Ezh2, a core subunit of PcG repressive complex 2, during the processes of axial skeletal patterning. Our findings provide new insights into the regulation of Hox gene temporal collinear activation for body axial patterning in mice.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 840
Author(s):  
Qiaofeng Zhao ◽  
Satoshi Koyama ◽  
Nagisa Yoshihara ◽  
Atsushi Takagi ◽  
Etsuko Komiyama ◽  
...  

We recently discovered a nonsynonymous variant in the coiled-coil alpha-helical rod protein 1 (CCHCR1) gene within the alopecia areata (AA) risk haplotype. We also reported that the engineered mice with this risk allele exhibited. To investigate more about the involvement of the CCHCR1 gene in AA pathogenesis, we developed an AA model using C57BL/6N cchcr1 gene knockout mice. In this study, mice (6–8 weeks) were divided into two groups: cchcr1−/− mice and wild-type (WT) littermates. Both groups were subjected to a water avoidance stress (WAS) test. Eight weeks after the WAS test, 25% of cchcr1−/− mice exhibited non-inflammatory foci of alopecia on the dorsal skin. On the other hand, none of wild-type littermates cause hair loss. The foci resembled human AA in terms of gross morphology, trichoscopic findings and histological findings. Additionally, gene expression microarray analysis of cchcr1−/− mice revealed abnormalities of hair related genes compared to the control. Our results strongly suggest that CCHCR1 is associated with AA pathogenesis and that cchcr1−/− mice are a good model for investigating AA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wen-Lu Ou-Yang ◽  
Bei Guo ◽  
Feng Xu ◽  
Xiao Lin ◽  
Fu-Xing-Zi Li ◽  
...  

Irisin, a PGC1α-dependent myokine, was once believed to have beneficial effects induced by exercise. Since its first discovery of adipose browning in 2012, multiple studies have been trying to explore the metabolic functions of irisin, such as glucose and lipid metabolism. However, recently many studies with irisin concentration measuring were doubt for methodological problems, which may account for the continuous inconsistencies. New tools like recombinant irisin and gene-knockout mice are required to reconfirm the questioned functions of irisin. In this paper, we make a critical introduction to the latest researches concerning the relationship between irisin and coronary heart disease, which includes atherosclerosis, stable angina pectoris and acute coronary syndromes. These studies provided various controversial evidence of short and long-term monitoring and therapeutic effect from molecular cellular mechanisms, in vivo experiments and epidemiological investigation. But with ambiguities, irisin still has a long way to go to identify its functions in the clinical management.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bin Ni ◽  
Zhengsen Chen ◽  
Le Shu ◽  
Yunpeng Shao ◽  
Yi Huang ◽  
...  

Objective. To investigate the protective effect and molecular mechanism of nuclear factor E2-related factor 2 (Nrf2) pathway in interstitial cystitis (IC). Methods. We established a mouse model of IC by cyclophosphamide (CYP) in wild-type mice and Nrf2 gene knockout mice. We examined the histological and functional alterations, the changes of oxidative stress markers, and the expression of the antioxidant genes downstream of Nrf2 pathway. Results. After CYP administration, the mice showed urinary frequency and urgency, pain sensitization, decreased contractility, bladder edema, and oxidative stress disorder. Notably, the Nrf2-/- CYP mice had more severe symptoms. The mRNA and protein levels of antioxidant genes downstream of Nrf2 pathway were significantly upregulated in the Nrf2+/+ CYP mice, while there were no significant changes in the Nrf2-/- CYP mice. Conclusion. Nrf2 pathway protects bladder injury and ameliorates bladder dysfunction in IC, possibly by upregulating antioxidant genes and inhibiting oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document