catalyst carriers
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 21)

H-INDEX

12
(FIVE YEARS 3)

Author(s):  
Jie Huang ◽  
Xiaojie Sui ◽  
Haishan Qi ◽  
Xiang Lan ◽  
Simin Liu ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) have displayed great potential as catalyst carriers due to their nanoscale structure and large specific surface area. However, their hydrophobicity and poor dispersibility in water restrict...


2021 ◽  
pp. 11-28
Author(s):  
Yanan Guo ◽  
Xin Pan ◽  
Qingjiao Zhu ◽  
Jingjing Ma ◽  
Qingjie Guo

Four biomass-based catalyst carriers with different pore structures were prepared by using a carbonization-activation method, followed by employment in the copyrolysis of Walnut Shell/Polypropylene (WNS/PP) to produce Benzene, Toluene and Xylene (BTX). Ten cycles were performed in each copyrolysis test in a bench-scaled tube furnace to determine the suitable pore size of the catalyst and excellent cycling performance for BTX production. In addition, Zn, Ni, and Ce were loaded with the selected catalyst carriers to synthesize the most suitable biomass-based catalyst. Results showed that the pore size and active center of the catalyst were the key factors affecting the WNS/PP catalytic copyrolysis. Biomass-based carrier with a pore size in the range of 0.55-1.2 nm was the most suitable to produce BTX in the optimal 10 cycle performance; it realized a relative BTX content of 9-20 area%, and a BTX mass yield of 23-67 mg/(graw) in the liquid-phase products from the WNS/PP copyrolysis. A catalyst loaded with 10 wt% Zn possessed the best catalytic effect with a relative BTX content of 39.49 area%, and a BTX yield of 111.13 mg/(graw)


2021 ◽  
Vol 166 ◽  
pp. 209-219
Author(s):  
Christoph Sinn ◽  
Jonas Wentrup ◽  
Georg R. Pesch ◽  
Jorg Thöming ◽  
Lars Kiewidt

2020 ◽  
Vol 4 (4) ◽  
pp. 61
Author(s):  
Christoph Sinn ◽  
Jonas Wentrup ◽  
Jorg Thöming ◽  
Georg R. Pesch

Structured open-cell foam reactors are promising for managing highly exothermic reactions such as CO2 methanation due to their excellent heat transport properties. Especially at low flow rates and under dynamic operation, foam-based reactors can be advantageous over classic fixed-bed reactors. To efficiently design the catalyst carriers, a thorough understanding of heat transport mechanisms is needed. So far, studies on heat transport in foams have mostly focused on the solid phase and used air at atmospheric pressure as fluid phase. With the aid of pore-scale 3d CFD simulations, we analyze the effect of the fluid properties on heat transport under conditions close to the CO2 methanation reaction for two different foam structures. The exothermicity is mimicked via volumetric uniformly distributed heat sources. We found for foams that are designed to be used as catalyst carriers that the working pressure range and the superficial velocity influence the dominant heat removal mechanism significantly. In contrast, the influence of fluid type and gravity on heat removal is small in the range relevant for heterogeneous catalysis. The findings might help to facilitate the design-process of open-cell foam reactors and to better understand heat transport mechanisms in foams.


Sign in / Sign up

Export Citation Format

Share Document