Zwitterionic peptide-functionalized highly dispersed carbon nanotubes for efficient wastewater treatment

Author(s):  
Jie Huang ◽  
Xiaojie Sui ◽  
Haishan Qi ◽  
Xiang Lan ◽  
Simin Liu ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) have displayed great potential as catalyst carriers due to their nanoscale structure and large specific surface area. However, their hydrophobicity and poor dispersibility in water restrict...

NANO ◽  
2018 ◽  
Vol 13 (04) ◽  
pp. 1850036 ◽  
Author(s):  
Guiqiang Diao ◽  
Hao Li ◽  
Hao Liang ◽  
Iryna Ivanenko ◽  
Tetiana Dontsova ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) were synthesized onto a series of individual and bimetallic catalysts by the chemical vapor deposition (CVD) of acetylene at low temperature (600[Formula: see text]C). The catalysts were prepared by two methods, i.e., precipitation and sol–gel, with two different carriers – MgO and Al2O3. The catalysts were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric (TG) analysis, low-temperature adsorption of nitrogen. The yield of the MWCNTs was calculated in two ways, while the highest yield of 800% was achieved onto the two-component NiO/Co2O3/MgO catalyst, SEM and transmission electron microscopy (TEM) results confirm that uniform tube-like structure MWCNTs with the yield of 410% were obtained onto Co2O3/Al2O3 catalyst. These MWCNTs are smooth and pointing in the same direction. Their tube diameter is about 20[Formula: see text]nm, which is the smallest around all observed MWCNTs. Moreover, nonuniform curved bamboo-like MWCNTs with nozzles in the yield of 760% were obtained onto NiO/V2O3/MgO catalyst. Their diameter ranges from 25[Formula: see text]nm to 50[Formula: see text]nm. Results show that single-component catalyst promotes the growth of uniform and smaller nanotubes. Among the as-grown nanotubes, their specific surface area increases and average pores diameter reduces after the treatment with concentrated nitric acid at reflux and washing condition. The largest specific surface area (305[Formula: see text]m2/g) and average pores diameter (26[Formula: see text]m2/g) are processed to MWCNTs grown onto the NiO/Co2O3/MgO catalyst. MWCNTs with such large structural adsorption characteristics and purity of more than 99% obtained with yield 800% show potential use for preparation of nanocomposites as anode materials in lithium ion batteries.


2015 ◽  
Vol 3 (21) ◽  
pp. 5573-5579 ◽  
Author(s):  
Yuling Li ◽  
Mingjun Li ◽  
Minglei Pang ◽  
Shengyu Feng ◽  
Jie Zhang ◽  
...  

The specific surface area is a key factor that determines both the electrical and mechanical properties of silicone rubber/MWCNTs.


2021 ◽  
Author(s):  
Yaxiong Zhang ◽  
Erqing Xie

Carbon nanotubes (CNTs) have been widely studied as supercapacitor electrodes because of their excellent conductivity, high aspect ratio, excellent mechanical properties, chemical stability, and large specific surface area. However, the...


2012 ◽  
Vol 65 (7) ◽  
pp. 1208-1214 ◽  
Author(s):  
N. Thepsuparungsikul ◽  
N. Phonthamachai ◽  
H. Y. Ng

The microbial fuel cell (MFC) is a novel and innovative technology that could allow direct harvesting of energy from wastewater through microbial activity with simultaneous oxidation of organic matter in wastewater. Among all MFC parts, electrode materials play a crucial role in electricity generation. A variety of electrode materials have been used, including plain graphite, carbon paper and carbon cloth. However, these electrode materials generated only limited electricity or power. Recently, many research studies have been conducted on carbon nanotubes (CNTs) because of their unique physical and chemical properties that include high conductivity, high surface area, corrosion resistance, and electrochemical stability. These properties make them extremely attractive for fabricating electrodes and catalyst supports. In this study, CNT-based electrodes had been developed to improve MFC performance in terms of electricity generation and treatment efficiency. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups have been employed to fabricate electrodes for single-chamber air-cathode MFCs. The quality of the prepared MWCNTs-based electrodes was evaluated by morphology, electrical conductivity and specific surface area using a field emission scanning electron microscope, four-probe method and Brunauer–Emmerr–Teller method, respectively. The performance of MFCs equipped with MWCNT-based electrodes was evaluated by chemical analysis and electrical monitoring and calculation. In addition, the performance of these MFCs, using MWCNTs as electrodes, was compared against that using commercial carbon cloth.


2021 ◽  
Vol 1039 ◽  
pp. 237-244
Author(s):  
Firas K. Mohamad Alosfur ◽  
Noor J. Ridha ◽  
Mohammad Hafizuddin Haji Jumali ◽  
S. Radiman ◽  
Khawla J. Tahir ◽  
...  

Multi-walled carbon nanotubes (MWCNTs) probably hold with each other and agglomerated due to van der Waals force. Functionalized process was used to reduce its ability to agglomerate and to increase dispersion in solution. The present work is focused on the microwave irradiation in order to achieve rapid functionalization of MWCNTs compared with other known techniques. The power of microwave radiation was selected by investigating the structural integrity of the samples by X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM), while BET surface area measurement was used to measure the MWCNT surface area before and after treatment. The dispersion test in the solution was performed to determine the separation capability of untreated MWCNTs and f-MWCNTs.


Sign in / Sign up

Export Citation Format

Share Document