caledonian granite
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2010 ◽  
Vol 147 (6) ◽  
pp. 886-894 ◽  
Author(s):  
MARTIN FEELY ◽  
DAVID SELBY ◽  
JON HUNT ◽  
JAMES CONLIFFE

AbstractNew Re–Os age determinations from the Galway Granite (samples: KMG = 402.2 ± 1.1 Ma, LLG = 399.5 ± 1.7 Ma and GBM = 383.3 ± 1.1 Ma) show that in south Connemara, late Caledonian granite-related molybdenite mineralization extended from c. 423 Ma to c. 380 Ma. These events overlap and are in excellent agreement with the published granite emplacement history determined by U–Pb zircon geochronology. The spatial distribution of the late-Caledonian Connemara granites indicates that initial emplacement and molybdenite mineralization occurred at c. 420 Ma (that is, the Omey Granite and probably the Inish, Leterfrack and Roundstone granites) to the N and NW of the Skird Rocks Fault, an extension of the orogen-parallel Southern Uplands Fault in western Ireland. A generally southern and eastward progression of granite emplacement (and molybdenite mineralization) sited along the Skird Rocks Fault then followed, at c. 410 Ma (Roundstone Murvey and Carna granites), at c. 400 Ma (Errisbeg Townland Granite, Megacrystic Granite, Mingling Mixing Zone Granodiorite, Lough Lurgan Granite and Kilkieran Murvey Granite) and at c. 380 Ma (Costelloe Murvey Granite, Shannapheasteen and Knock granites). The duration of granite magmatism and mineralization in Connemara is similar to other sectors of the Appalachian–Caledonian orogeny and several tectonic processes (e.g. slab-breakoff, asthenospheric flow, transtension and decompression) may account for the duration and variety of granite magmatism of the western Irish Caledonides.


1989 ◽  
Vol 126 (4) ◽  
pp. 397-405 ◽  
Author(s):  
D. E. Kitchen

AbstractA regional Tertiary basaltic dyke swarm intensifies within a Caledonian granite at Barnesmore, Co. Donegal. Rapid heating along the contact of one (possible feeder) dyke resulted in disequilibrium partial melting of granite wall-rock and the generation of a range in melt composition by the in situ melting of feldspar. The compositional variability of the melt is preserved in a glass containing feldspar spherulites and other quench phases which suggest rapid cooling. During partial melting the trace elements, Rb, Sr, and Ba were mobile and have been concentrated in glassy melted granite close to the contact of one dyke. The textures, mineralogy and geochemistry of dolerite in two dykes indicate localized bulk contamination and mixing with melted granite. This had a particularly marked effect on the crystallization of pyroxene and resulted in a wide range in mineral composition reflecting the degree of contamination. The intensification of a regional dyke swarm in well-jointed granite might control the siting of some major intrusive centres. Granite melted and mixed with basaltic magma may contribute to the evolution of granites in such centres.


Author(s):  
John Parnell ◽  
Ian Swainbank

ABSTRACTThe lead isotope compositions of 61 galenas from central and southern Scotland vary markedly between different regions. Most galenas from the southern Grampian Highlands yield isotope ratios (206Pb/204Pb 17·77 ± 0·25, 207Pb/204Pb 15·47 ± 0·05, 208Pb/204Pb 37·63 ± 0·26) less radiogenic than those from Midland Valley galenas (18·22 ± 0·12, 15·55 ± 0·05, 38·13 ± 0·14) whilst galena lead from the Southern Uplands (18·28 ± 0·12, 15·56 ± 0·03, 38·21 ± 0·18) is more radiogenic than that from the southern Midland Valley (18·12 ± 0·06, 15·52 ± 0·02, 38·06 ±0·10). The change in isotopie composition across the Highland Boundary fault reflects the presence or absence of Dalradian rocks which included a magmatic component of lead. Galenas from the Dalradian sequence in Islay, where igneous rocks are lacking, have a composition (18·14±0·04, 15·51±0·01, 37·90±0·02) more like Midland Valley galenas. In the Southern Uplands, galenas yield lead isotope ratios similar to those of feldspars from Caledonian granite (18·30 ± 0·14, 15·57 ± 0·04, 37·96 ± 0·15) analysed by Blaxland et al. (1979). The similar ratios reflect the incorporation of Lower Palaeozoic sedimentary rocks into the granite magma, rather than a granitic source for the mineralisation. The granites were then thermal-structural foci for later mineralising fluids which leached metals from the surrounding rocks. Within the Midland Valley, galenas hosted in Lower Devonian-Lower Carboniferous lavas are notably more radiogenic (18·31 ±0·12, 15·58 ± 0·06, 38·20 ± 0·16) than sediment-hosted galenas (18·14 ± 0·07, 15·52 ± 0·02, 38·08 ± 0·10). The Devonian lavas at least may have inherited lead from subducted (? Lower Palaeozoic) rock incorporated in the primary magma.


Nature ◽  
1982 ◽  
Vol 297 (5868) ◽  
pp. 671-673 ◽  
Author(s):  
P. K. H. Maguire ◽  
E. M. Andrew ◽  
G. Arter ◽  
R. A. Chadwick ◽  
P. Greenwood ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document