xiaolangdi reservoir
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Honglei Zhu ◽  
Yanwei Huang ◽  
Yingchen Li ◽  
Fei Yu ◽  
Guoyuan Zhang ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 1290-1302
Author(s):  
Ruimeng Wang ◽  
Li Pan ◽  
Wenhui Niu ◽  
Rumeng Li ◽  
Xiaoyang Zhao ◽  
...  

Abstract Xiaolangdi Reservoir is a key control project to control the water and sediment in the lower Yellow River, and a timely and accurate grasp of the reservoir’s water storage status is essential for the function of the reservoir. This study used all available Landsat images (789 scenes) and adopted the modified normalized difference water index, enhanced vegetation index, and normalized difference vegetation index to map the surface water from 1999 to 2019 in Google Earth Engine (GEE) cloud platform. The spatiotemporal characteristics of the surface water body area changes in the Xiaolangdi Reservoir in the past 21 years are analyzed from the water body type division, area change, type conversion, and the driving force of the Xiaolangdi water body area changes was analyzed. The results showed that (1) the overall accuracy of the water body extraction method was 98.86%, and the kappa coefficient was 0.96; (2) the maximum water body area of the Xiaolangdi Reservoir varies greatly between inter-annual and intra-annual, and seasonal water body and permanent water body have uneven spatiotemporal distribution; (3) in the conversion of water body types, the increased seasonal water body area of the Xiaolangdi Reservoir from 1999 to 2019 was mainly formed by the conversion of permanent water body, and the reduced permanent water body area was mainly caused by non-water conversion; and (4) the change of the water body area of the Xiaolangdi Reservoir has a weak negative correlation with natural factors such as precipitation and temperature, and population. It is positively correlated with seven indicators such as runoff and regional gross domestic product (GDP). The findings of the research will provide necessary data support for the management and planning of soil and water resources in the Xiaolangdi Reservoir.


2021 ◽  
Vol 33 (5) ◽  
pp. 1532-1540
Author(s):  
Li Tao ◽  
◽  
Xia Runliang ◽  
Xia Junqiang ◽  
Zhang Junhua ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 915 ◽  
Author(s):  
Tao Bai ◽  
Xia Liu ◽  
Yan-ping HA ◽  
Jian-xia Chang ◽  
Lian-zhou Wu ◽  
...  

Given the increasingly worsening ecology issues in the lower Yellow River, the Xiaolangdi reservoir is chosen as the regulation and control target, and the single and multi-objective operation by ecology and power generation in the lower Yellow River is studied in this paper. This paper first proposes the following three indicators: the ecological elasticity coefficient (f1), the power generation elasticity coefficient (f2), and the ecological power generation profit and loss ratio (k). This paper then conducts a multi-target single dispatching study on ecology and power generation in the lower Yellow River. A genetic algorithm (GA) and an improved non-dominated genetic algorithm (NSGA-II) combining constraint processing and feasible space search techniques were used to solve the single-objective model with the largest power generation and the multi-objective optimal scheduling model considering both ecology and power generation. The calculation results show that: (1) the effectiveness of the NSGA-Ⅱcombined with constraint processing and feasible spatial search technology in reservoir dispatching is verified by an example; (2) compared with the operation model of maximizing power generation, the power generation of the target model was reduced by 0.87%, the ecological guarantee rate was increased by 18.75%, and the degree of the impact of ecological targets on the operating results was quantified; (3) in each typical year, the solution spatial distribution and dimensions of the single-target and multi-target models of change are represented by the Pareto-front curve, and a multi-objective operation plan is generated for decision makers to choose; (4) the f1, f2, and k indicators are selected to analyze the sensitivity of the five multi-objective plans and to quantify the interaction between ecological targets and power generation targets. Ultimately, this paper discusses the conversion relationship and finally recommends the best equilibrium solution in the multi-objective global equilibrium solution set. The results provide a decision-making basis for the multi-objective dispatching of the Xiaolangdi reservoir and have important practical significance for further improving the ecological health of the lower Yellow River.


2020 ◽  
Author(s):  
Hongbo Ma ◽  
Gary Parker ◽  
Jeffrey Nittrouer ◽  
Brandon McElory ◽  
Yuanjian Wang ◽  
...  

<p>Turbidity currents are a major way to transport sediment along reservoir, lake and sea beds. They are not fully understood yet due to the difficulty of accessibility. Theoretical criteria have been established for the conditions that generate accelerating turbidity currents, which can produce strong erosion of channel beds, transmit over long distances and thus have important significance for reservoir and sea bed morphology. However, the current theoretical criterion only utilizes local factors of hydraulic, morphology and grain size, which do not necessarily depend on the up- and down- stream boundary conditions. Here, we conducted field surveys on turbidity currents and bed morphology of the Xiaolangdi reservoir on the Yellow River, China. The survey results show clear evidence of accelerating turbidity currents. We identify two types of accelerating turbidity currents: one locates closely to the upstream plunging point where fluvial sediment-laden flow collapses to a stratified turbidity current, concentrating momentum and producing acceleration locally, and the other is located downstream and shows dependence on the enhancement of local slope and potentially on downstream boundary (flushing condition at flow outlets of the dam). So both ends of the boundaries may work together to produce long run-out turbidity currents that transmit through the entire reservoir.  Although preliminary, our dataset indicates that the conditions for accelerating turbidity currents are not only controlled by local morphology and grain size, but also by both upstream and downstream conditions. A comprehensive understanding of the boundary conditions so as to determine conditions for the generation of accelerating turbidity currents will help enhance the sustainability of the dam and reservoir system.</p>


2019 ◽  
Vol 49 (4) ◽  
pp. 419-432
Author(s):  
ZhengWei XIONG ◽  
JunQiang XIA ◽  
ZengHui WANG ◽  
Tao LI ◽  
JunHua ZHANG

Sign in / Sign up

Export Citation Format

Share Document