scholarly journals Monitoring the spatiotemporal dynamics of surface water body of the Xiaolangdi Reservoir using Landsat-5/7/8 imagery and Google Earth Engine

2021 ◽  
Vol 13 (1) ◽  
pp. 1290-1302
Author(s):  
Ruimeng Wang ◽  
Li Pan ◽  
Wenhui Niu ◽  
Rumeng Li ◽  
Xiaoyang Zhao ◽  
...  

Abstract Xiaolangdi Reservoir is a key control project to control the water and sediment in the lower Yellow River, and a timely and accurate grasp of the reservoir’s water storage status is essential for the function of the reservoir. This study used all available Landsat images (789 scenes) and adopted the modified normalized difference water index, enhanced vegetation index, and normalized difference vegetation index to map the surface water from 1999 to 2019 in Google Earth Engine (GEE) cloud platform. The spatiotemporal characteristics of the surface water body area changes in the Xiaolangdi Reservoir in the past 21 years are analyzed from the water body type division, area change, type conversion, and the driving force of the Xiaolangdi water body area changes was analyzed. The results showed that (1) the overall accuracy of the water body extraction method was 98.86%, and the kappa coefficient was 0.96; (2) the maximum water body area of the Xiaolangdi Reservoir varies greatly between inter-annual and intra-annual, and seasonal water body and permanent water body have uneven spatiotemporal distribution; (3) in the conversion of water body types, the increased seasonal water body area of the Xiaolangdi Reservoir from 1999 to 2019 was mainly formed by the conversion of permanent water body, and the reduced permanent water body area was mainly caused by non-water conversion; and (4) the change of the water body area of the Xiaolangdi Reservoir has a weak negative correlation with natural factors such as precipitation and temperature, and population. It is positively correlated with seven indicators such as runoff and regional gross domestic product (GDP). The findings of the research will provide necessary data support for the management and planning of soil and water resources in the Xiaolangdi Reservoir.

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3010 ◽  
Author(s):  
Ruimeng Wang ◽  
Haoming Xia ◽  
Yaochen Qin ◽  
Wenhui Niu ◽  
Li Pan ◽  
...  

The spatio-temporal change of the surface water is very important to agricultural, economic, and social development in the Hetao Plain, as well as the structure and function of the ecosystem. To understand the long-term changes of the surface water area in the Hetao Plain, we used all available Landsat images (7534 scenes) and adopted the modified Normalized Difference Water Index (mNDWI), Enhanced Vegetation Index (EVI), and Normalized Difference Vegetation Index (NDVI) to map the open-surface water from 1989 to 2019 in the Google Earth Engine (GEE) cloud platform. We further analyzed precipitation, temperature, and irrigated area, revealing the impact of climate change and human activities on long-term surface water changes. The results show the following. (1) In the last 31 years, the maximum, seasonal, and annual average water body area values in the Hetao Plain have exhibited a downward trend. Meanwhile, the number of maximum, seasonal, and permanent water bodies displayed a significant upward trend. (2) The variation of the surface water area in the Hetao Plain is mainly affected by the maximum water body area, while the variation of the water body number is mainly affected by the number of minimum water bodies. (3) Precipitation has statistically significant positive effects on the water body area and water body number, which has statistically significant negative effects with temperature and irrigation. The findings of this study can be used to help the policy-makers and farmers understand changing water resources and its driving mechanism and provide a reference for water resources management, agricultural irrigation, and ecological protection.


2018 ◽  
Vol 115 (15) ◽  
pp. 3810-3815 ◽  
Author(s):  
Zhenhua Zou ◽  
Xiangming Xiao ◽  
Jinwei Dong ◽  
Yuanwei Qin ◽  
Russell B. Doughty ◽  
...  

The contiguous United States (CONUS), especially the West, faces challenges of increasing water stress and uncertain impacts of climate change. The historical information of surface water body distribution, variation, and multidecadal trends documented in remote-sensing images can aid in water-resource planning and management, yet is not well explored. Here, we detected open-surface water bodies in all Landsat 5, 7, and 8 images (∼370,000 images, >200 TB) of the CONUS and generated 30-meter annual water body frequency maps for 1984–2016. We analyzed the interannual variations and trends of year-long water body area, examined the impacts of climatic and anthropogenic drivers on water body area dynamics, and explored the relationships between water body area and land water storage (LWS). Generally, the western half of the United States is prone to water stress, with small water body area and large interannual variability. During 1984–2016, water-poor regions of the Southwest and Northwest had decreasing trends in water body area, while water-rich regions of the Southeast and far north Great Plains had increasing trends. These divergent trends, mainly driven by climate, enlarged water-resource gaps and are likely to continue according to climate projections. Water body area change is a good indicator of LWS dynamics in 58% of the CONUS. Following the 2012 prolonged drought, LWS in California and the southern Great Plains had a larger decrease than surface water body area, likely caused by massive groundwater withdrawals. Our findings provide valuable information for surface water-resource planning and management across the CONUS.


2017 ◽  
Vol 595 ◽  
pp. 451-460 ◽  
Author(s):  
Zhenhua Zou ◽  
Jinwei Dong ◽  
Michael A. Menarguez ◽  
Xiangming Xiao ◽  
Yuanwei Qin ◽  
...  

2019 ◽  
Vol 11 (3) ◽  
pp. 313 ◽  
Author(s):  
Yingbing Wang ◽  
Jun Ma ◽  
Xiangming Xiao ◽  
Xinxin Wang ◽  
Shengqi Dai ◽  
...  

In recent years, the shrinkage of Poyang Lake, the largest freshwater lake in China, has raised concerns for society. The regulation of the Three Gorges Dam (TGD) has been argued to be a cause of the depletion of the lake by previous studies. However, over the past few decades, the lake’s surface water dynamic has remained poorly characterized, especially before the regulation of the TGD (2003). By calculating the inundation frequency with an index- and pixel-based water detection algorithm on Google Earth Engine (GEE), this study explored the spatial–temporal variation of the lake during 1988–2016 and compared the differences in Poyang Lake’s water body between the pre- and post-TGD periods. The year-long water body area of the lake has shown a significant decreasing trend over the past 29 years and has shifted to a smaller regime since 2006. The inundation frequency of the lake has also generally decreased since 2003, particularly at the central part of the lake, and the effects of this trend have been most severe in the spring and autumn seasons. The lake’s area has shown significant correlation with the precipitation of the Poyang Lake Basin on an inner-annual scale. The drivers of and relevant factors relating to the inter-annual variation of the lake’s surface water should be further investigated in the future.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2822
Author(s):  
Jiahao Chen ◽  
Tingting Kang ◽  
Shuai Yang ◽  
Jingyi Bu ◽  
Kexin Cao ◽  
...  

The Tarim River Basin (TRB), located in an arid region, is facing the challenge of increasing water pressure and uncertain impacts of climate change. Many water body identification methods have achieved good results in different application scenarios, but only a few for arid areas. An arid region water detection rule (ARWDR) was proposed by combining vegetation index and water index. Taking computing advantages of the Google Earth Engine (GEE) cloud platform, 56,284 Landsat 5/7/8 optical images in the TRB were used to detect open-surface water bodies and generated a 30-m annual water frequency map from 1992 to 2019. The interannual changes and trends of the water body area were analyzed and the impacts of climatic and anthropogenic drivers on open-surface water body area dynamics were examined. The results show that: (1) ARWDR is suitable for long-term and large-scale water body identification, especially suitable for arid areas lacking vegetation. (2) The permanent water area was 2093.63 km2 and the seasonal water area was 44,242.80 km2, accounting for 4.52% and 95.48% of the total open-surface water area of he TRB, respectively. (3) From 1992 to 2019, the permanent and seasonal water bodies of the TRB all showed an increasing trend, with obvious spatial heterogeneity. (4) Among the effects of human activities and climate change, precipitation has the largest impact on the water area, which can explain 65.3% of the change of water body area. Our findings provide valuable information for the entire TRB’s open-surface water resources planning and management.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 138
Author(s):  
Zijie Jiang ◽  
Weiguo Jiang ◽  
Ziyan Ling ◽  
Xiaoya Wang ◽  
Kaifeng Peng ◽  
...  

Surface water is an essential element that supports natural ecosystem health and human life, and its losses or gains are closely related to national or local sustainable development. Monitoring the spatial-temporal changes in surface water can directly support the reporting of progress towards the sustainable development goals (SDGs) outlined by the government, especially for measuring SDG 6.6.1 indicators. In our study, we focused on Baiyangdian Lake, an important lake in North China, and explored its spatiotemporal extent changes from 2014 to 2020. Using long-term Sentinel-1 SAR images and the OTSU algorithm, our study developed an automatic water extraction framework to monitor surface water changes in Baiyangdian Lake at a 10 m resolution from 2014 to 2020 on the Google Earth Engine cloud platform. The results showed that (1) the water extraction accuracy in our study was considered good, showing high consistency with the existing dataset. In addition, it was found that the classification accuracy in spring, summer, and fall was better than that in winter. (2) From 2014 to 2020, the surface water area of Baiyangdian Lake exhibited a slowly rising trend, with an average water area of 97.03 km2. In terms of seasonal variation, the seasonal water area changed significantly. The water areas in spring and winter were larger than those in summer and fall. (3) Spatially, most of the water was distributed in the eastern part of Baiyangdian Lake, which accounted for roughly 57% of the total water area. The permanent water area, temporary water area, and non-water area covered 49.69 km2, 97.77 km2, and 171.55 km2, respectively. Our study monitored changes in the spatial extent of the surface water of Baiyangdian Lake, provides useful information for the sustainable development of the Xiong’an New Area and directly reports the status of SDG 6.6.1 indicators over time.


Author(s):  
Malik R. Abbas ◽  
Mahir Mahmod Hason ◽  
Baharin Bin Ahmad ◽  
Abd Wahid Bin Rasib ◽  
Talib R. Abbas

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253209
Author(s):  
Jianfeng Li ◽  
Biao Peng ◽  
Yulu Wei ◽  
Huping Ye

To realize the accurate extraction of surface water in complex environment, this study takes Sri Lanka as the study area owing to the complex geography and various types of water bodies. Based on Google Earth engine and Sentinel-2 images, an automatic water extraction model in complex environment(AWECE) was developed. The accuracy of water extraction by AWECE, NDWI, MNDWI and the revised version of multi-spectral water index (MuWI-R) models was evaluated from visual interpretation and quantitative analysis. The results show that the AWECE model could significantly improve the accuracy of water extraction in complex environment, with an overall accuracy of 97.16%, and an extremely low omission error (0.74%) and commission error (2.35%). The AEWCE model could effectively avoid the influence of cloud shadow, mountain shadow and paddy soil on water extraction accuracy. The model can be widely applied in cloudy, mountainous and other areas with complex environments, which has important practical significance for water resources investigation, monitoring and protection.


Sign in / Sign up

Export Citation Format

Share Document