scholarly journals MESSENGER Observations of Mercury's Nightside Magnetosphere Under Extreme Solar Wind Conditions: Reconnection‐Generated Structures and Steady Convection

Author(s):  
W. J. Sun ◽  
J. A. Slavin ◽  
R. M. Dewey ◽  
Y. Chen ◽  
G. A. DiBraccio ◽  
...  
Keyword(s):  
2009 ◽  
Vol 27 (11) ◽  
pp. 4281-4291 ◽  
Author(s):  
N. Partamies ◽  
T. I. Pulkkinen ◽  
R. L. McPherron ◽  
K. McWilliams ◽  
C. R. Bryant ◽  
...  

Abstract. This study describes a systematic statistical comparison of isolated non-storm substorms, steady magnetospheric convection (SMC) intervals and sawtooth events. The number of events is approximately the same in each group and the data are taken from about the same years to avoid biasing by different solar cycle phase. The very same superposed epoch analysis is performed for each event group to show the characteristics of ground-based indices (AL, PCN, PC potential), particle injection at the geostationary orbit and the solar wind and IMF parameters. We show that the monthly occurrence of sawtooth events and isolated non-stormtime substorms closely follows maxima of the geomagnetic activity at (or close to) the equinoxes. The most strongly solar wind driven event type, sawtooth events, is the least efficient in coupling the solar wind energy to the auroral ionosphere, while SMC periods are associated with the highest coupling ratio (AL/EY). Furthermore, solar wind speed seems to play a key role in determining the type of activity in the magnetosphere. Slow solar wind is capable of maintaining steady convection. During fast solar wind streams the magnetosphere responds with loading–unloading cycles, represented by substorms during moderately active conditions and sawtooth events (or other storm-time activations) during geomagnetically active conditions.


Author(s):  
Charles F. Kennel

How does the plasma sheet respond to the complex pattern of waves coming over the poles from bursty magnetopause reconnection events, or to the vortices and other irregular perturbations coming around the flanks of the magnetosphere in the low-latitude boundary layer? It is probably too much to expect that the complex input from the dayside will sort itself out into a steady flow on the nightside, but there has been a seductive hope that, on a statistical basis, the observations of the plasma sheet could be rationalized using steady convection thinking. This hope depends on the belief that the average magnetic field configuration in the plasma sheet actually is compatible with steady convection. The first doubts on this score were raised by Erickson and Wolf (1980), and were subsequently elaborated by Tsyganenko (1982), Birn and Schindler (1983), and Liu and Hill (1985); the“plasma sheet pressure paradox” they posed is the subject of Section 9.2. Theoretical arguments are one thing, measurements are another; the truly important issue is whether the real plasma sheet manifests steady flow. Several groups have searched large data sets to see whether the statistically averaged flow in the central plasma sheet resembles the flow predicted by the steady convection model. This effort has led to a growing but still incomplete comprehension of the statistical properties of plasma sheet transport. Results obtained using ensembles of data acquired by ISEE 1 and AMPTE/IRM will be reviewed in Section 9.3. The unusual distribution of bulk flow velocities suggests that the plasma sheet flow is bimodal, alternating between a predominant irregular low-speed state and an infrequently occurring state of high-speed earthward flow. In search of steady plasma sheet flow, one could also look into substormfree periods of stable solar wind properties. One of the best such studies, in which great care was taken to find periods of exceptionally stable solar wind and geomagnetic conditions, is reviewed in Section 9.4. Even this study found highly irregular and bursty flow.


1984 ◽  
Vol 75 ◽  
pp. 597
Author(s):  
E. Grün ◽  
G.E. Morfill ◽  
T.V. Johnson ◽  
G.H. Schwehm

ABSTRACTSaturn's broad E ring, the narrow G ring and the structured and apparently time variable F ring(s), contain many micron and sub-micron sized particles, which make up the “visible” component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. It is suggested that the extent of the E ring and the braided, kinky structure of certain portions of the F rings as well as possible time variations are a result of plasma induced electromagnetic perturbations and drag forces. The G ring, in this scenario, requires some form of shepherding and should be akin to the F ring in structure. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 102to 104years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.


Author(s):  
S. R. Singh ◽  
H. J. Fan ◽  
L. D. Marks

Since the original observation that the surfaces of materials undergo radiation damage in the electron microscope similar to that observed by more conventional surface science techniques there has been substantial interest in understanding these phenomena in more detail; for a review see. For instance, surface damage in a microscope mimics damage in the space environment due to the solar wind and electron beam lithographic operations.However, purely qualitative experiments that have been done in the past are inadequate. In addition, many experiments performed in conventional microscopes may be inaccurate. What is needed is careful quantitative analysis including comparisons of the behavior in UHV versus that in a conventional microscope. In this paper we will present results of quantitative analysis which clearly demonstrate that the phenomena of importance are diffusion controlled; more detailed presentations of the data have been published elsewhere.As an illustration of the results, Figure 1 shows a plot of the shrinkage of a single, roughly spherical particle of WO3 versus time (dose) driven by oxygen desorption from the surface.


Sign in / Sign up

Export Citation Format

Share Document