asymptotic scaling
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 933 ◽  
Author(s):  
Baole Wen ◽  
David Goluskin ◽  
Charles R. Doering

The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a fluid layer heated from below and cooled from above – is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $Ra\to \infty$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed ‘classical’ $Nu \sim Ra^{1/3}$ or ‘ultimate’ $Nu \sim Ra^{1/2}$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $10^{14}$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$ , we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continues to be dominated by heat transport in steady rolls as $Ra\to \infty$ , it cannot achieve the ultimate scaling.


Author(s):  
Marina A. Ferreira ◽  
Jani Lukkarinen ◽  
Alessia Nota ◽  
Juan J. L. Velázquez

AbstractWe consider the multicomponent Smoluchowski coagulation equation under non-equilibrium conditions induced either by a source term or via a constant flux constraint. We prove that the corresponding stationary non-equilibrium solutions have a universal localization property. More precisely, we show that these solutions asymptotically localize into a direction determined by the source or by a flux constraint: the ratio between monomers of a given type to the total number of monomers in the cluster becomes ever closer to a predetermined ratio as the cluster size is increased. The assumptions on the coagulation kernel are quite general, with isotropic power law bounds. The proof relies on a particular measure concentration estimate and on the control of asymptotic scaling of the solutions which is allowed by previously derived estimates on the mass current observable of the system.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 253
Author(s):  
David R. Junior ◽  
Luis E. Oxman ◽  
Gustavo M. Simões

In this review, we discuss the present status of the description of confining flux tubes in SU(N) pure Yang–Mills theory in terms of ensembles of percolating center vortices. This is based on three main pillars: modeling in the continuum the ensemble components detected in the lattice, the derivation of effective field representations, and contrasting the associated properties with Monte Carlo lattice results. The integration of the present knowledge about these points is essential to get closer to a unified physical picture for confinement. Here, we shall emphasize the last advances, which point to the importance of including the non-oriented center-vortex component and non-Abelian degrees of freedom when modeling the center-vortex ensemble measure. These inputs are responsible for the emergence of topological solitons and the possibility of accommodating the asymptotic scaling properties of the confining string tension.


Author(s):  
FAHAD AL SAADI ◽  
ALAN CHAMPNEYS ◽  
CHUNYI GAI ◽  
THEODORE KOLOKOLNIKOV

An analysis is undertaken of the formation and stability of localised patterns in a 1D Schanckenberg model, with source terms in both the activator and inhibitor fields. The aim is to illustrate the connection between semi-strong asymptotic analysis and the theory of localised pattern formation within a pinning region created by a subcritical Turing bifurcation. A two-parameter bifurcation diagram of homogeneous, periodic and localised patterns is obtained numerically. A natural asymptotic scaling for semi-strong interaction theory is found where an activator source term \[a = O(\varepsilon )\] and the inhibitor source \[b = O({\varepsilon ^2})\] , with ε2 being the diffusion ratio. The theory predicts a fold of spike solutions leading to onset of localised patterns upon increase of b from zero. Non-local eigenvalue arguments show that both branches emanating from the fold are unstable, with the higher intensity branch becoming stable through a Hopf bifurcation as b increases beyond the \[O(\varepsilon )\] regime. All analytical results are found to agree with numerics. In particular, the asymptotic expression for the fold is found to be accurate beyond its region of validity, and its extension into the pinning region is found to form the low b boundary of the so-called homoclinic snaking region. Further numerical results point to both sub and supercritical Hopf bifurcation and novel spikeinsertion dynamics.


2020 ◽  
Author(s):  
Saavan Patel ◽  
Lili Chen ◽  
Philip Canoza ◽  
Sayeef Salahuddin

Abstract In this work we demonstrate usage of the Restricted Boltzmann Machine (RBM) as a stochastic neural network capable of solving NP-Hard Combinatorial Optimization problems efficiently. By mapping the RBM onto a reconfigurable Field Programmable Gate Array (FPGA), we can effectively hardware accelerate the RBM's stochastic sampling algorithm. We benchmark the RBM against the DWave 2000Q Quantum Adiabatic Computer and the Optical Coherent Ising Machine on two such optimization problems: the MAX-CUT problem and the Sherrington-Kirkpatrick (SK) spin glass. The hardware accelerated RBM shows asymptotic scaling either similar or better than these other accelerators. This leads to 107x and 105x time to solution improvement compared to the DWave 2000Q on the MAX-CUT and SK problems respectively, along with a 150x and 1000x improvement compared to the Coherent Ising Machine annealer on those problems. By utilizing commodity hardware running at room temperature, the RBM shows potential for immediate and scalable use.


Author(s):  
Joel E. Cohen ◽  
Richard A. Davis ◽  
Gennady Samorodnitsky

Pillai & Meng (Pillai & Meng 2016 Ann. Stat. 44 , 2089–2097; p. 2091) speculated that ‘the dependence among [random variables, rvs] can be overwhelmed by the heaviness of their marginal tails ·· ·’. We give examples of statistical models that support this speculation. While under natural conditions the sample correlation of regularly varying (RV) rvs converges to a generally random limit, this limit is zero when the rvs are the reciprocals of powers greater than one of arbitrarily (but imperfectly) positively or negatively correlated normals. Surprisingly, the sample correlation of these RV rvs multiplied by the sample size has a limiting distribution on the negative half-line. We show that the asymptotic scaling of Taylor’s Law (a power-law variance function) for RV rvs is, up to a constant, the same for independent and identically distributed observations as for reciprocals of powers greater than one of arbitrarily (but imperfectly) positively correlated normals, whether those powers are the same or different. The correlations and heterogeneity do not affect the asymptotic scaling. We analyse the sample kurtosis of heavy-tailed data similarly. We show that the least-squares estimator of the slope in a linear model with heavy-tailed predictor and noise unexpectedly converges much faster than when they have finite variances.


2020 ◽  
Vol 15 (1) ◽  
pp. 60-71
Author(s):  
Thijs Laarhoven

AbstractWe revisit the approximate Voronoi cells approach for solving the closest vector problem with preprocessing (CVPP) on high-dimensional lattices, and settle the open problem of Doulgerakis–Laarhoven–De Weger [PQCrypto, 2019] of determining exact asymptotics on the volume of these Voronoi cells under the Gaussian heuristic. As a result, we obtain improved upper bounds on the time complexity of the randomized iterative slicer when using less than $2^{0.076d + o(d)}$ memory, and we show how to obtain time–memory trade-offs even when using less than $2^{0.048d + o(d)}$ memory. We also settle the open problem of obtaining a continuous trade-off between the size of the advice and the query time complexity, as the time complexity with subexponential advice in our approach scales as $d^{d/2 + o(d)}$ matching worst-case enumeration bounds, and achieving the same asymptotic scaling as average-case enumeration algorithms for the closest vector problem.


2020 ◽  
Vol 16 (11) ◽  
pp. 1082-1083 ◽  
Author(s):  
Peng Ji ◽  
Wei Lin ◽  
Jürgen Kurths

2020 ◽  
Vol 16 (11) ◽  
pp. 1084-1085 ◽  
Author(s):  
Chittaranjan Hens ◽  
Uzi Harush ◽  
Simcha Haber ◽  
Reuven Cohen ◽  
Baruch Barzel

2020 ◽  
Vol 32 (4) ◽  
pp. 041702 ◽  
Author(s):  
Shivsai Ajit Dixit ◽  
Abhishek Gupta ◽  
Harish Choudhary ◽  
A. K. Singh ◽  
Thara Prabhakaran

Sign in / Sign up

Export Citation Format

Share Document