error estimation method
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 16)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 11 (8) ◽  
pp. 3476
Author(s):  
Min-Han Oh ◽  
San Kim

In this paper, we present an automatic procedure that enhances the solution accuracy of edge-based smoothed 2D solid finite elements (three-node triangular and four-node quadrilateral elements). To obtain an enhanced solution, an adaptive enrichment scheme that uses enriched 2D solid finite elements and can effectively improve solution accuracy by applying cover functions adaptively without mesh-refinement is adopted in this procedure. First, the error of the edge-based finite element solution is estimated using a devised error estimation method, and appropriate cover functions are assigned for each node. While the edge-based smoothed finite elements provide piecewise constant strain fields, the proposed enrichment scheme uses the enriched finite elements to obtain a higher order strain field within the finite elements. Through various numerical examples, we demonstrate the accuracy improvement and efficiency achieved.


2021 ◽  
Author(s):  
Hong Gong ◽  
xiongfei wang ◽  
Dongsheng Yang

The <i>dq</i>-frame admittance of closed-loop controlled three-phase converters is a linearized model that is dependent on the operating points of the system. Yet, it is impractical to measure the converter admittance at all operating points. This paper, thus, proposes an approach to estimating the <i>dq</i>-frame admittance of three-phase converters at a wide range of operating points. The method applies multidimensional interpolation to a given set of admittance data, which is measured from the pre-defined operating points. The accuracy of interpolation is then evaluated by using the posterior error estimation method. The number of pre-defined operating points is next adjusted to find a good compromise between the accuracy and efficiency of the approach. Simulations and experimental results verify the effectiveness of the approach.<div><br></div>


2021 ◽  
Author(s):  
Hong Gong ◽  
xiongfei wang ◽  
Dongsheng Yang

The <i>dq</i>-frame admittance of closed-loop controlled three-phase converters is a linearized model that is dependent on the operating points of the system. Yet, it is impractical to measure the converter admittance at all operating points. This paper, thus, proposes an approach to estimating the <i>dq</i>-frame admittance of three-phase converters at a wide range of operating points. The method applies multidimensional interpolation to a given set of admittance data, which is measured from the pre-defined operating points. The accuracy of interpolation is then evaluated by using the posterior error estimation method. The number of pre-defined operating points is next adjusted to find a good compromise between the accuracy and efficiency of the approach. Simulations and experimental results verify the effectiveness of the approach.<div><br></div>


2021 ◽  
Vol 54 (3-4) ◽  
pp. 324-335
Author(s):  
Li Bo ◽  
Wang Taiyong ◽  
Wang Peng

In contour machining, contour error is a major factor affecting machining quality. In order to improve the performance of contour following, many control techniques based on real-time contour error estimation have been developed. In this paper, a Double Circle contour error estimation method is proposed. First, based on the kinematic information of the reference point on the command trajectory, five interpolation points closest to the actual point are obtained. Then the approximate contour error is obtained by employing the Double Circle approximation method. Compared with the common contour error approximation methods, the proposed method can achieve high precision approximation. In addition, according to the proposed contour error approximation method, the cross-coupled control strategy is improved. Experiments prove the effectiveness of the proposed estimation method and control strategy.


2020 ◽  
Vol 17 (2) ◽  
pp. 197-201 ◽  
Author(s):  
Weifu Li ◽  
Xinghui Zhao ◽  
Jiangtao Peng ◽  
Zhicheng Luo ◽  
Lijun Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document