baseline error
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 6)

H-INDEX

3
(FIVE YEARS 1)

Author(s):  
PJ Mulcahey ◽  
PT Knott ◽  
A Madiraju ◽  
N Haque ◽  
DS Haoson ◽  
...  

To develop a protocol for assessing spinal range of motion using an inertial sensor device. The baseline error of an inertial sensor was assessed using a bicycle wheel. Nineteen healthy subjects (12 females and 7 males, average age 18.2 ± 0.6 years) were then prospectively enrolled in a study to assess the reliability of an inertial sensor-based method for assessing spinal motion. Three raters each took three measurements of subjects’ flexion/extension, right and left bending, and right and left rotation. Afterwards, one trial from each set of measurements was excluded. Correlations and the ICC (3,1) were used to assess intra-rater reliability, and ICC (3,2) was used to assess inter-rater reliability of the protocol. The baseline error of the sensor was 1.45°. Correlation and ICC (3,1) values for the protocol all exceeded 0.888, indicating high intra-rater reliability. ICC (3,2) values for the protocol exceed 0.87, indicating high inter-rater reliability. Our study presents both a paradigm for assessing the baseline error of inertial sensors and a protocol for assessing motion of the spine using an inertial sensing device.


2021 ◽  
Author(s):  
JinJu Kim ◽  
Woobin Yun ◽  
Yu Jin Park ◽  
Jieun Seo ◽  
Richard Dong Wook Lee ◽  
...  

Abstract Background Short tandem repeat (STR)-based chimerism analysis has been widely used for chimerism monitoring after hematopoietic stem-cell transplantation (HSCT), but technical artifacts can be problematic. We designed a chimerism assay using single nucleotide polymorphisms (SNPs) adjacent and in linkage-disequilibrium (CASAL), which doubly checked for SNP pairs, and thus could reduce background errors and increase analytical sensitivity. Methods CASAL targeted 84 SNP pairs within 10 bp distance and in perfect linkage-disequilibrium. Using undiluted and serially diluted samples, baseline error rates, and linearity was calculated. Clinical performance of CASAL was evaluated in comparison with a conventional STR assay, using 191 posttransplant samples from 42 patients with HSCT. Results CASAL had ∼10 times lower baseline error rates compared to that of ordinary next-generation sequencing. Limit of detection and quantification of CASAL were estimated to be 0.09 and 0.39%, respectively, with a linear range of 0.1–100%. CASAL correlated well with STR assay (r2 = 0.99) and the higher sensitivity enabled detection of low-level recipient chimerism and earlier prediction of relapse. Conclusions CASAL is a simple, analytically sensitive and accurate assay that can be used in clinical samples after HSCT with a higher performance compared to that of traditional assays. It should also be useful in other forensic and archeological testing.


2020 ◽  
Vol 20 (20) ◽  
pp. 12203-12216
Author(s):  
Dong You ◽  
Guang-Cai Sun ◽  
Xiang-Gen Xia ◽  
Mengdao Xing ◽  
Yachao Li ◽  
...  

2020 ◽  
Vol 133 (4) ◽  
pp. 1191-1201 ◽  
Author(s):  
Franck-Emmanuel Roux ◽  
Imène Djidjeli ◽  
Romain Quéhan ◽  
Emilie Réhault ◽  
Carlo Giussani ◽  
...  

OBJECTIVEThe purpose of this study was to characterize the reproducibility of language trials within and between brain mapping sessions.METHODSBrain mapping and baseline testing data from 200 adult patients who underwent resection of left-hemisphere tumors were evaluated. Data from 11 additional patients who underwent a second resection for recurrence were analyzed separately to investigate reproducibility over time. In all cases, a specific protocol of electrostimulation brain mapping with a controlled naming task was used to detect language areas, and the results were statistically compared with preoperative and intraoperative baseline naming error rates. All patients had normal preoperative error rates, controlled for educational level and age (mean 8.92%, range 0%–16.25%). Intraoperative baseline error rates within the normal range were highly correlated with preoperative ones (r = 0.74, p < 10−10), although intraoperative rates were usually higher (mean 13.30%, range 0%–26.67%). Initially, 3 electrostimulation trials were performed in each cortical area. If 2 of 3 trials showed language interference, 1 or 2 additional trials were performed (depending on results).RESULTSIn the main group of 200 patients, there were 82 single interferences (i.e., positive results in 1 of 3 trials), 227 double interferences (2/3), and 312 full interferences (3/3). Binomial statistics revealed that full interferences were statistically significant (vs intraoperative baseline) in 92.7% of patients, while double interferences were significant only in 38.5% of patients, those with the lowest error rates. On further testing, one-third of the 2/3 trials became 2/4 trials, which was significant in only one-quarter of patients. Double interference could be considered significant for most patients (> 90%) when confirmed by 2 subsequent positive trials (4/5). In the 11 patients who were operated on twice, only 26% of areas that tested positive in the initial operation tested positive in the second and showed the same type of interference and the same current threshold (i.e., met all 3 criteria).CONCLUSIONSElectrostimulation trials in awake brain mapping produced graded patterns of positive reproducibility levels, and their significance varied with the baseline error rates. The results suggest that caution is warranted when 2 of 3 trials are positive, although the need for additional trials depends on the individual patients’ baseline error rates. Reproducibility issues should be considered in the interpretation of data from awake brain mapping.


Author(s):  
Huan Lu ◽  
Zhiyong Suo ◽  
Zhenfang Li ◽  
Jinwei Xie ◽  
Qingjun Zhang

For Interferometry Synthetic Aperture Radar (InSAR), the normal baseline is one of the main factors that affect the accuracy of the ground elevation. For Gaofen-3 (GF-3) InSAR processing, the poor accuracy of the real-time orbit determination resulting in a large baseline error, leads to the modulation error in azimuth and the slope error in range for timely Digital Elevation Model (DEM) generation. In order to address this problem, a baseline estimation method based on external DEM is proposed in this paper. Firstly, according to the characteristic of the real-time orbit of GF-3 images, orbit fitting is executed to remove the non-linear error factor. Secondly, the height errors are obtained in slant-range plane between Shuttle Radar Topography Mission (SRTM) DEM and the GF-3 generated DEM after orbit fitting. At the same time, the height errors are used to estimate the baseline error which has a linear variation. In this way, the orbit error can be calibrated by the estimated baseline error. Finally, DEM generation is performed by using the modified baseline and orbit. This procedure is implemented iteratively to achieve a higher accuracy DEM. Based on the results of GF-3 interferometric SAR data for Hebei, the effectiveness of the proposed algorithm is verified and the accuracy of GF-3 real-time DEM products can be improved extensively.


Author(s):  
X. Gao ◽  
T. Li ◽  
X. Zhang ◽  
X. Geng

In this paper, we proposed the stochastic model of InSAR height measurement by considering the interferometric geometry of InSAR height measurement. The model directly described the relationship between baseline error and height measurement error. Then the simulation analysis in combination with TanDEM-X parameters was implemented to quantitatively evaluate the influence of baseline error to height measurement. Furthermore, the whole emulation validation of InSAR stochastic model was performed on the basis of SRTM DEM and TanDEM-X parameters. The spatial distribution characteristics and error propagation rule of InSAR height measurement were fully evaluated.


2016 ◽  
Vol 54 (9) ◽  
pp. 5341-5351 ◽  
Author(s):  
Guang Liu ◽  
Ramon F. Hanssen ◽  
Huadong Guo ◽  
Huanyin Yue ◽  
Zbigniew Perski

2012 ◽  
Vol 588-589 ◽  
pp. 2093-2096
Author(s):  
Bo Huang

In the distributed satellite SAR system, satellite attitude change bring on baseline error between physical baseline and effective baseline and echo phase error. If the errors aren’t corrected, it may induce velocity-measure error. In this paper, we first respectively analyze the Influence of the satellite attitude to effective baseline and velocity-measure precision, and build the corrected model of baseline. Then we also analyze the synthetical Influence of that. The simulation results show that the validity and the necessary of the corrected model of baseline, and it is presented that the correctional curves of the baseline error and the velocity-measure error.


Sign in / Sign up

Export Citation Format

Share Document