perturbation resilience
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 1)

Algorithmica ◽  
2021 ◽  
Author(s):  
Sayan Bandyapadhyay

AbstractThe Non-Uniform k-center (NUkC) problem has recently been formulated by Chakrabarty et al. [ICALP, 2016; ACM Trans Algorithms 16(4):46:1–46:19, 2020] as a generalization of the classical k-center clustering problem. In NUkC, given a set of n points P in a metric space and non-negative numbers $$r_1, r_2, \ldots , r_k$$ r 1 , r 2 , … , r k , the goal is to find the minimum dilation $$\alpha $$ α and to choose k balls centered at the points of P with radius $$\alpha \cdot r_i$$ α · r i for $$1\le i\le k$$ 1 ≤ i ≤ k , such that all points of P are contained in the union of the chosen balls. They showed that the problem is $$\mathsf {NP}$$ NP -hard to approximate within any factor even in tree metrics. On the other hand, they designed a “bi-criteria” constant approximation algorithm that uses a constant times k balls. Surprisingly, no true approximation is known even in the special case when the $$r_i$$ r i ’s belong to a fixed set of size 3. In this paper, we study the NUkC problem under perturbation resilience, which was introduced by Bilu and Linial (Comb Probab Comput 21(5):643–660, 2012). We show that the problem under 2-perturbation resilience is polynomial time solvable when the $$r_i$$ r i ’s belong to a constant-sized set. However, we show that perturbation resilience does not help in the general case. In particular, our findings imply that even with perturbation resilience one cannot hope to find any “good” approximation for the problem.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 197
Author(s):  
Yingying Li ◽  
Yaxuan Zhang

In this paper, we present some modified relaxed CQ algorithms with different kinds of step size and perturbation to solve the Multiple-sets Split Feasibility Problem (MSSFP). Under mild assumptions, we establish weak convergence and prove the bounded perturbation resilience of the proposed algorithms in Hilbert spaces. Treating appropriate inertial terms as bounded perturbations, we construct the inertial acceleration versions of the corresponding algorithms. Finally, for the LASSO problem and three experimental examples, numerical computations are given to demonstrate the efficiency of the proposed algorithms and the validity of the inertial perturbation.


Author(s):  
Konstantin Makarychev ◽  
Yury Makarychev

2020 ◽  
Vol 16 (2) ◽  
pp. 1-39
Author(s):  
Maria-Florina Balcan ◽  
Nika Haghtalab ◽  
Colin White

Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 535
Author(s):  
Yanni Guo ◽  
Xiaozhi Zhao

In this paper, a multi-parameter proximal scaled gradient algorithm with outer perturbations is presented in real Hilbert space. The strong convergence of the generated sequence is proved. The bounded perturbation resilience and the superiorized version of the original algorithm are also discussed. The validity and the comparison with the use or not of superiorization of the proposed algorithms were illustrated by solving the l 1 − l 2 problem.


Sign in / Sign up

Export Citation Format

Share Document