scholarly journals Bounded Perturbation Resilience and Superiorization of Proximal Scaled Gradient Algorithm with Multi-Parameters

Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 535
Author(s):  
Yanni Guo ◽  
Xiaozhi Zhao

In this paper, a multi-parameter proximal scaled gradient algorithm with outer perturbations is presented in real Hilbert space. The strong convergence of the generated sequence is proved. The bounded perturbation resilience and the superiorized version of the original algorithm are also discussed. The validity and the comparison with the use or not of superiorization of the proposed algorithms were illustrated by solving the l 1 − l 2 problem.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Bin-Chao Deng ◽  
Tong Chen

LetHbe a real Hilbert space. LetT1,T2:H→Hbek1-,k2-strictly pseudononspreading mappings; letαnandβnbe two real sequences in (0,1). For givenx0∈H, the sequencexnis generated iteratively byxn+1=βnxn+1-βnTw1αnγfxn+I-μαnBTw2xn,∀n∈N, whereTwi=1−wiI+wiTiwithi=1,2andB:H→His strongly monotone and Lipschitzian. Under some mild conditions on parametersαnandβn, we prove that the sequencexnconverges strongly to the setFixT1∩FixT2of fixed points of a pair of strictly pseudononspreading mappingsT1andT2.



Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 480
Author(s):  
Manatchanok Khonchaliew ◽  
Ali Farajzadeh ◽  
Narin Petrot

This paper presents two shrinking extragradient algorithms that can both find the solution sets of equilibrium problems for pseudomonotone bifunctions and find the sets of fixed points of quasi-nonexpansive mappings in a real Hilbert space. Under some constraint qualifications of the scalar sequences, these two new algorithms show strong convergence. Some numerical experiments are presented to demonstrate the new algorithms. Finally, the two introduced algorithms are compared with a standard, well-known algorithm.



2012 ◽  
Vol 2012 ◽  
pp. 1-27 ◽  
Author(s):  
Bin-Chao Deng ◽  
Tong Chen ◽  
Baogui Xin

Let{T}i=1NbeNquasi-nonexpansive mappings defined on a closed convex subsetCof a real Hilbert spaceH. Consider the problem of finding a common fixed point of these mappings and introduce the parallel and cyclic algorithms for solving this problem. We will prove the strong convergence of these algorithms.



2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Songnian He ◽  
Caiping Yang

Consider the variational inequalityVI(C,F)of finding a pointx*∈Csatisfying the property〈Fx*,x-x*〉≥0, for allx∈C, whereCis the intersection of finite level sets of convex functions defined on a real Hilbert spaceHandF:H→His anL-Lipschitzian andη-strongly monotone operator. Relaxed and self-adaptive iterative algorithms are devised for computing the unique solution ofVI(C,F). Since our algorithm avoids calculating the projectionPC(calculatingPCby computing several sequences of projections onto half-spaces containing the original domainC) directly and has no need to know any information of the constantsLandη, the implementation of our algorithm is very easy. To prove strong convergence of our algorithms, a new lemma is established, which can be used as a fundamental tool for solving some nonlinear problems.



Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2381-2391
Author(s):  
Jenwit Puangpee ◽  
Suthep Suantai

In this paper, we introduce two hybrid algorithms for finding a common best proximity point of two best proximally nonexpansive mappings. We establish strong convergence theorems of the proposed algorithms under some control conditions in a real Hilbert space. Moreover, some numerical examples are given for supporting our main theorems.



Sign in / Sign up

Export Citation Format

Share Document