boric oxide
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 2)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kawaljit Singh Randhawa ◽  
Ashwin Patel

Purpose This paper aims to investigate the tribological performance, i.e. abrasion resistance, friction coefficient and wear rates, of self-lubricated water conditioned polyamide6/boric oxide composites. Design/methodology/approach Polyamide6 and polyamide6/boric oxide self-lubricated composites were immersed in water for 15 days to analyze the effect of water conditioning on friction, wear and abrasion resistance. Tribological testing on pin-on-disc tribometer and abrasion resistance testing on TABER abrader were performed to see the friction coefficient and wear rates of materials. The scanning electron microscopy (SEM) characterizations were performed to analyze the wear tracks. Findings Tribological testing results revealed the loss in abrasive resistance, but there was an improvement in frictional coefficient and wear rates with steel after water absorption. The SEM images clearly show less depth of wear tracks in water-conditioned materials than dry ones. Water conditioning was found supportive in the formation of smooth lubricating transfer film on steel disc during the tribological testing. Originality/value The tribological behaviour of polymer composites is different in dry and in high humidity or water conditions. Experiments were performed to investigate B2O3 solid lubricant filler effectiveness on tribological behaviour of water-conditioned polyamide composites. Bonding between polyamide6 and water molecules plus the formation of orthoboric acid was found advantageous in decreasing the friction coefficient and wear rates of composites.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kawaljit Singh Randhawa ◽  
Ashwin Patel

Purpose This paper aims to investigate the mechanical and thermal behavior, i.e. tensile strength, hardness, impact strength and glass transition temperatures of water-treated polyamide6/boric oxide (PA) composites. Design/methodology/approach The PA6 and PA6/boric oxide composites were exposed to an open environment and immersed in water for 15 days to analyze the effect of environmental humidity and frequent water immersion conditions on the composite’s mechanical and thermal properties. The tensile strength, elastic modulus, hardness and impact strength of materials were measured to identify the mechanical properties. The scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) characterizations were used to see the effect of humidity/water absorption on microstructure, crystallinity and glass transition temperatures. Findings The testing results revealed the loss in strength, elastic modulus and hardness, while the impact resistance was improved after exposure of materials to humidity/water. SEM images clearly show the formation of voids and XRD graphs revealed the loss in crystallinity after water immersion. The DSC plots of water immersed materials revealed the loss of glass transition temperatures up to 15°C. Originality/value The mechanical and thermal behavior of PA composites varies according to the surrounding atmosphere. Experiments were performed to investigate the influence of water treatment on the PA6/B2O3 composite’s mechanical and thermal properties. Water treatment resulted in the bonding between PA and water molecules, which generated voids in the materials. These voids generations are found the main reason for the low strength and hardness of water-treated materials.


Sign in / Sign up

Export Citation Format

Share Document