bundle gerbes
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
DAVID MICHAEL ROBERTS

Abstract Many bundle gerbes are either infinite-dimensional, or finite-dimensional but built using submersions that are far from being fibre bundles. Murray and Stevenson [‘A note on bundle gerbes and infinite-dimensionality’, J. Aust. Math. Soc.90(1) (2011), 81–92] proved that gerbes on simply-connected manifolds, built from finite-dimensional fibre bundles with connected fibres, always have a torsion $DD$ -class. I prove an analogous result for a wide class of gerbes built from principal bundles, relaxing the requirements on the fundamental group of the base and the connected components of the fibre, allowing both to be nontrivial. This has consequences for possible models for basic gerbes, the classification of crossed modules of finite-dimensional Lie groups, the coefficient Lie-2-algebras for higher gauge theory on principal 2-bundles and finite-dimensional twists of topological K-theory.


Author(s):  
Severin Bunk ◽  
Lukas Müller ◽  
Richard J. Szabo

AbstractWe study bundle gerbes on manifolds M that carry an action of a connected Lie group G. We show that these data give rise to a smooth 2-group extension of G by the smooth 2-group of hermitean line bundles on M. This 2-group extension classifies equivariant structures on the bundle gerbe, and its non-triviality poses an obstruction to the existence of equivariant structures. We present a new global approach to the parallel transport of a bundle gerbe with connection, and use it to give an alternative construction of this smooth 2-group extension in terms of a homotopy-coherent version of the associated bundle construction. We apply our results to give new descriptions of nonassociative magnetic translations in quantum mechanics and the Faddeev–Mickelsson–Shatashvili anomaly in quantum field theory. We also propose a definition of smooth string 2-group models within our geometric framework. Starting from a basic gerbe on a compact simply-connected Lie group G, we prove that the smooth 2-group extensions of G arising from our construction provide new models for the string group of G.


2021 ◽  
Vol 8 (1) ◽  
pp. 150-182
Author(s):  
Severin Bunk

Abstract This is a mostly self-contained survey article about bundle gerbes and some of their recent applications in geometry, field theory, and quantisation. We cover the definition of bundle gerbes with connection and their morphisms, and explain the classification of bundle gerbes with connection in terms of differential cohomology. We then survey how the surface holonomy of bundle gerbes combines with their transgression line bundles to yield a smooth bordism-type field theory. Finally, we exhibit the use of bundle gerbes in geometric quantisation of 2-plectic as well as 1- and 2-shifted symplectic forms. This generalises earlier applications of gerbes to the prequantisation of quasi-symplectic groupoids.


Author(s):  
STEFAN SCHRÖER

We give a geometric interpretation of sheaf cohomology for higher degrees $n\geq 1$ in terms of torsors on the member of degree $d=n-1$ in hypercoverings of type $r=n-2$ , endowed with an additional datum, the so-called rigidification. This generalizes the fact that cohomology in degree one is the group of isomorphism classes of torsors, where the rigidification becomes vacuous, and that cohomology in degree two can be expressed in terms of bundle gerbes, where the rigidification becomes an associativity constraint.


2020 ◽  
Vol 149 ◽  
pp. 103572
Author(s):  
Kimberly E. Becker ◽  
Michael K. Murray ◽  
Daniel Stevenson
Keyword(s):  

2019 ◽  
Vol 32 (06) ◽  
pp. 2050017
Author(s):  
Severin Bunk ◽  
Richard J. Szabo

We present homotopy theoretic and geometric interpretations of the Kane–Mele invariant for gapped fermionic quantum systems in three dimensions with time-reversal symmetry. We show that the invariant is related to a certain 4-equivalence which lends it an interpretation as an obstruction to a block decomposition of the sewing matrix up to non-equivariant homotopy. We prove a Mayer–Vietoris Theorem for manifolds with [Formula: see text]-actions which intertwines Real and [Formula: see text]-equivariant de Rham cohomology groups, and apply it to derive a new localization formula for the Kane–Mele invariant. This provides a unified cohomological explanation for the equivalence between the discrete Pfaffian formula and the known local geometric computations of the index for periodic lattice systems. We build on the relation between the Kane–Mele invariant and the theory of bundle gerbes with [Formula: see text]-actions to obtain geometric refinements of this obstruction and localization technique. In the preliminary part we review the Freed–Moore theory of band insulators on Galilean spacetimes with emphasis on geometric constructions, and present a bottom-up approach to time-reversal symmetric topological phases.


2019 ◽  
Vol 23 (8) ◽  
pp. 2093-2159 ◽  
Author(s):  
Pedram Hekmati ◽  
Michael K. Murray ◽  
Richard J. Szabo ◽  
Raymond F. Vozzo
Keyword(s):  

2018 ◽  
Vol 30 (01) ◽  
pp. 1850001 ◽  
Author(s):  
Severin Bunk ◽  
Christian Sämann ◽  
Richard J. Szabo

We construct a prequantum 2-Hilbert space for any line bundle gerbe whose Dixmier–Douady class is torsion. Analogously to usual prequantization, this 2-Hilbert space has the category of sections of the line bundle gerbe as its underlying 2-vector space. These sections are obtained as certain morphism categories in Waldorf’s version of the 2-category of line bundle gerbes. We show that these morphism categories carry a monoidal structure under which they are semisimple and abelian. We introduce a dual functor on the sections, which yields a closed structure on the morphisms between bundle gerbes and turns the category of sections into a 2-Hilbert space. We discuss how these 2-Hilbert spaces fit various expectations from higher prequantization. We then extend the transgression functor to the full 2-category of bundle gerbes and demonstrate its compatibility with the additional structures introduced. We discuss various aspects of Kostant–Souriau prequantization in this setting, including its dimensional reduction to ordinary prequantization.


2018 ◽  
Vol 114 ◽  
pp. 145-180 ◽  
Author(s):  
Krzysztof Gawędzki

2017 ◽  
Vol 107 (10) ◽  
pp. 1877-1918 ◽  
Author(s):  
Severin Bunk ◽  
Richard J. Szabo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document