sidechain rotamers
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 4)

H-INDEX

1
(FIVE YEARS 1)

2021 ◽  
Vol 17 (3) ◽  
pp. e1008061
Author(s):  
Brian Coventry ◽  
David Baker

In aqueous solution, polar groups make hydrogen bonds with water, and hence burial of such groups in the interior of a protein is unfavorable unless the loss of hydrogen bonds with water is compensated by formation of new ones with other protein groups. For this reason, buried “unsatisfied” polar groups making no hydrogen bonds are very rare in proteins. Efficiently representing the energetic cost of unsatisfied hydrogen bonds with a pairwise-decomposable energy term during protein design is challenging since whether or not a group is satisfied depends on all of its neighbors. Here we describe a method for assigning a pairwise-decomposable energy to sidechain rotamers such that following combinatorial sidechain packing, buried unsaturated polar atoms are penalized. The penalty can be any quadratic function of the number of unsatisfied polar groups, and can be computed very rapidly. We show that inclusion of this term in Rosetta sidechain packing calculations substantially reduces the number of buried unsatisfied polar groups.


Author(s):  
Brian Coventry ◽  
David Baker

AbstractIn aqueous solution, polar groups make hydrogen bonds with water, and hence burial of such groups in the interior of a protein is unfavorable unless the loss of hydrogen bonds with water is compensated by formation of new ones with other protein groups. Hence, buried “unsatisfied” polar groups making no hydrogen bonds are very rare in proteins. Efficiently representing the energetic cost of unsatisfied hydrogen bonds with a pairwise-decomposable energy term during protein design is challenging since whether or not a group is satisfied depends on all of its neighbors. Here we describe a method for assigning a pairwise-decomposable energy to sidechain rotamers such that following combinatorial sidechain packing, buried unsaturated polar atoms are penalized. The penalty can be any quadratic function of the number of unsatisfied polar groups, and can be computed very rapidly. We show that inclusion of this term in Rosetta sidechain packing calculations substantially reduces the number of buried unsatisfied polar groups.


2019 ◽  
Author(s):  
Kalistyn H. Burley ◽  
Samuel C. Gill ◽  
Nathan M. Lim ◽  
David Mobley

<div>Molecular simulations are a valuable tool for studying biomolecular motions and thermodynamics. However, such motions can be slow compared to simulation timescales, yet critical. Specifically, adequate sampling of sidechain motions in protein binding pockets proves crucial for obtaining accurate estimates of ligand binding free energies from molecular simulations. The timescale of sidechain rotamer flips can range from a few ps to several hundred ns or longer, particularly in crowded environments like the interior of proteins. Here, we apply a mixed non-equilibrium candidate Monte Carlo (NCMC)/molecular dynamics (MD) method to enhance sampling of sidechain rotamers. The NCMC portion of our method applies a switching protocol wherein the steric and electrostatic interactions between target sidechain atoms and the surrounding environment are cycled off and then back on during the course of a move proposal. Between NCMC move proposals, simulation of the system continues via traditional molecular dynamics. Here, we first validate this approach on a simple, solvated valine-alanine dipeptide system and then apply it to a well-studied model ligand binding site in T4 lysozyme L99A. We compute the rate of rotamer transitions for a valine sidechain using our approach and compare it to that of traditional molecular dynamics simulations. Here, we show that our NCMC/MD method substantially enhances sidechain sampling, especially in systems where the torsional barrier to rotation is high (>10 kcal/mol). These barriers can be intrinsic torsional barriers or steric barriers imposed by the environment.</div><div>Overall, this may provide a promising strategy to selectively improve sidechain sampling in molecular simulations.</div>


2019 ◽  
Author(s):  
Kalistyn H. Burley ◽  
Samuel C. Gill ◽  
Nathan M. Lim ◽  
David Mobley

<div>Molecular simulations are a valuable tool for studying biomolecular motions and thermodynamics. However, such motions can be slow compared to simulation timescales, yet critical. Specifically, adequate sampling of sidechain motions in protein binding pockets proves crucial for obtaining accurate estimates of ligand binding free energies from molecular simulations. The timescale of sidechain rotamer flips can range from a few ps to several hundred ns or longer, particularly in crowded environments like the interior of proteins. Here, we apply a mixed non-equilibrium candidate Monte Carlo (NCMC)/molecular dynamics (MD) method to enhance sampling of sidechain rotamers. The NCMC portion of our method applies a switching protocol wherein the steric and electrostatic interactions between target sidechain atoms and the surrounding environment are cycled off and then back on during the course of a move proposal. Between NCMC move proposals, simulation of the system continues via traditional molecular dynamics. Here, we first validate this approach on a simple, solvated valine-alanine dipeptide system and then apply it to a well-studied model ligand binding site in T4 lysozyme L99A. We compute the rate of rotamer transitions for a valine sidechain using our approach and compare it to that of traditional molecular dynamics simulations. Here, we show that our NCMC/MD method substantially enhances sidechain sampling, especially in systems where the torsional barrier to rotation is high (>10 kcal/mol). These barriers can be intrinsic torsional barriers or steric barriers imposed by the environment.</div><div>Overall, this may provide a promising strategy to selectively improve sidechain sampling in molecular simulations.</div>


2018 ◽  
Author(s):  
Kalistyn H. Burley ◽  
Samuel C. Gill ◽  
Nathan M. Lim ◽  
David Mobley

<div>Molecular simulations are a valuable tool for studying biomolecular motions and thermodynamics. However, such motions can be slow compared to simulation timescales, yet critical. Specifically, adequate sampling of sidechain motions in protein binding pockets proves crucial for obtaining accurate estimates of ligand binding free energies from molecular simulations. The timescale of sidechain rotamer flips can range from a few ps to several hundred ns or longer, particularly in crowded environments like the interior of proteins. Here, we apply a mixed non-equilibrium candidate Monte Carlo (NCMC)/molecular dynamics (MD) method to enhance sampling of sidechain rotamers. The NCMC portion of our method applies a switching protocol wherein the steric and electrostatic interactions between target sidechain atoms and the surrounding environment are cycled off and then back on during the course of a move proposal. Between NCMC move proposals, simulation of the system continues via traditional molecular dynamics. Here, we first validate this approach on a simple, solvated valine-alanine dipeptide system and then apply it to a well-studied model ligand binding site in T4 lysozyme L99A. We compute the rate of rotamer transitions for a valine sidechain using our approach and compare it to that of traditional molecular dynamics simulations. Here, we show that our NCMC/MD method substantially enhances sidechain sampling, especially in systems where the torsional barrier to rotation is high (>10 kcal/mol). These barriers can be intrinsic torsional barriers or steric barriers imposed by the environment.</div><div>Overall, this may provide a promising strategy to selectively improve sidechain sampling in molecular simulations.</div>


Sign in / Sign up

Export Citation Format

Share Document