deep water area
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 19)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Jan Robert Baur

<p>This study investigates the nature, origin, and distribution of Cretaceous to Recent sediment fill in the offshore Taranaki Basin, western New Zealand. Seismic attributes and horizon interpretations on 30,000 km of 2D seismic reflection profiles and three 3D seismic surveys (3,000 km²) are used to image depositional systems and reconstruct paleogeography in detail and regionally, across a total area of ~100,000 km² from the basin's present-day inner shelf to deep water. These data are used to infer the influence of crustal tectonics and mantle dynamics on the development of depocentres and depositional pathways. During the Cretaceous to Eocene period the basin evolved from two separate rifts into a single broad passive margin. Extensional faulting ceased before 85 Ma in the present-day deep-water area of the southern New Caledonia Trough, but stretching of the lithosphere was higher (β=1.5-2) than in the proximal basin (β<1.5), where faulting continued into the Paleocene (~60 Ma). The resulting differential thermal subsidence caused northward tilting of the basin and influenced the distribution of sedimentary facies in the proximal basin. Attribute maps delineate the distribution of the basin's main petroleum source and reservoir facies, from a ~20,000 km²-wide, Late Cretaceous coastal plain across the present-day deep-water area, to transgressive shoreline belts and coastal plains in the proximal basin. Rapid subsidence began in the Oligocene and the development of a foredeep wedge through flexural loading of the eastern boundary of Taranaki Basin is tracked through the Middle Miocene. Total shortening within the basin was minor (5-8%) and slip was mostly accommodated on the basin-bounding Taranaki Fault Zone, which detached the basin from much greater Miocene plate boundary deformation further east. The imaging of turbidite facies and channels associated with the rapidly outbuilding shelf margin wedge illustrates the development of large axial drainage systems that transported sediment over hundreds of kilometres from the shelf to the deep-water basin since the Middle Miocene. Since the latest Miocene, south-eastern Taranaki Basin evolved from a compressional foreland to an extensional (proto-back-arc) basin. This structural evolution is characterised by: 1) cessation of intra-basinal thrusting by 7-5 Ma, 2) up to 700 m of rapid (>1000 m/my) tectonic subsidence in 100-200 km-wide, sub-circular depocentres between 6-4 Ma (without significant upper-crustal faulting), and 3) extensional faulting since 3.5-3 Ma. The rapid subsidence in the east caused the drastic modification of shelf margin geometry and sediment dispersal directions. Time and space scales of this subsidence point to lithospheric or asthenospheric mantle modification, which may be a characteristic process during back-arc basin development. Unusual downward vertical crustal movements of >1 km, as inferred from seismic facies, paleobathymetry and tectonic subsidence analysis, have created the present-day Deepwater Taranaki Basin physiography, but are not adequately explained by simple rift models. It is proposed that the distal basin, and perhaps even the more proximal Taranaki Paleogene passive margin, were substantially modified by mantle processes related to the initiation of subduction on the fledgling Australia-Pacific plate boundary north of New Zealand in the Eocene.</p>


2021 ◽  
Author(s):  
◽  
Jan Robert Baur

<p>This study investigates the nature, origin, and distribution of Cretaceous to Recent sediment fill in the offshore Taranaki Basin, western New Zealand. Seismic attributes and horizon interpretations on 30,000 km of 2D seismic reflection profiles and three 3D seismic surveys (3,000 km²) are used to image depositional systems and reconstruct paleogeography in detail and regionally, across a total area of ~100,000 km² from the basin's present-day inner shelf to deep water. These data are used to infer the influence of crustal tectonics and mantle dynamics on the development of depocentres and depositional pathways. During the Cretaceous to Eocene period the basin evolved from two separate rifts into a single broad passive margin. Extensional faulting ceased before 85 Ma in the present-day deep-water area of the southern New Caledonia Trough, but stretching of the lithosphere was higher (β=1.5-2) than in the proximal basin (β<1.5), where faulting continued into the Paleocene (~60 Ma). The resulting differential thermal subsidence caused northward tilting of the basin and influenced the distribution of sedimentary facies in the proximal basin. Attribute maps delineate the distribution of the basin's main petroleum source and reservoir facies, from a ~20,000 km²-wide, Late Cretaceous coastal plain across the present-day deep-water area, to transgressive shoreline belts and coastal plains in the proximal basin. Rapid subsidence began in the Oligocene and the development of a foredeep wedge through flexural loading of the eastern boundary of Taranaki Basin is tracked through the Middle Miocene. Total shortening within the basin was minor (5-8%) and slip was mostly accommodated on the basin-bounding Taranaki Fault Zone, which detached the basin from much greater Miocene plate boundary deformation further east. The imaging of turbidite facies and channels associated with the rapidly outbuilding shelf margin wedge illustrates the development of large axial drainage systems that transported sediment over hundreds of kilometres from the shelf to the deep-water basin since the Middle Miocene. Since the latest Miocene, south-eastern Taranaki Basin evolved from a compressional foreland to an extensional (proto-back-arc) basin. This structural evolution is characterised by: 1) cessation of intra-basinal thrusting by 7-5 Ma, 2) up to 700 m of rapid (>1000 m/my) tectonic subsidence in 100-200 km-wide, sub-circular depocentres between 6-4 Ma (without significant upper-crustal faulting), and 3) extensional faulting since 3.5-3 Ma. The rapid subsidence in the east caused the drastic modification of shelf margin geometry and sediment dispersal directions. Time and space scales of this subsidence point to lithospheric or asthenospheric mantle modification, which may be a characteristic process during back-arc basin development. Unusual downward vertical crustal movements of >1 km, as inferred from seismic facies, paleobathymetry and tectonic subsidence analysis, have created the present-day Deepwater Taranaki Basin physiography, but are not adequately explained by simple rift models. It is proposed that the distal basin, and perhaps even the more proximal Taranaki Paleogene passive margin, were substantially modified by mantle processes related to the initiation of subduction on the fledgling Australia-Pacific plate boundary north of New Zealand in the Eocene.</p>


Author(s):  
D. A. Kazakov ◽  
A. S. Samodurov ◽  
◽  

The paper investigates the seasonal variability of the vertical turbulent exchange coefficient in the upper stratified layer of the Black Sea. The expedition data used in this work containing information on the microstructure of physical fields were obtained in different hydrological seasons covering the northeastern part of the Black Sea in the Prikerchensky area of the shelf slope. The data were collected during cruises of r/v “Professor Vodyanitsky” in 2016–2019 using “Sigma-1” sounding complex. Based on the semi-empirical methods of assessment of vertical turbulent exchange in the deep-water area of the Black Sea, the dependence of the vertical turbulent diffusion coefficient K on the buoyancy frequency N in the studied layer was established from the flow fluctuation characteristics, with the corresponding graphs and their approximating power-law dependences K  A  N  plotting. In addition, the vertical distribution of the K coefficient with depth was analyzed. Comparative analysis of the obtained dependences with the results of the 1.5D model was carried out. The analysis of the measurement data showed that the results obtained in this work do not contradict the original model. The results can also be used to assess the vertical fluxes of heat, salt and other dissolved chemical and biological substances depending on stratification in the studied part of the Black Sea for different seasons.


Author(s):  
Sarianna Salminen ◽  
Mira Tammelin ◽  
Tom Jilbert ◽  
Yu Fukumoto ◽  
Saija Saarni

AbstractThe influence of lake restoration efforts on lake bottom-water conditions and varve preservation is not well known. We studied varved sediments deposited during the last 80 years along a water-depth transect in the Enonsaari Deep, a deep-water area of the southernmost Enonselkä Basin, Lake Vesijärvi, southern Finland. For the last few decades, the Enonselkä Basin has been subject to ongoing restoration efforts. Varve, elemental, and diatom analyses were undertaken to explore how these actions and other human activities affected varve preservation in the Enonsaari Deep. In contrast to most varved Finnish lakes, whose water columns have a natural tendency to stratify, and possess varve records that span thousands of years, varve formation and preservation in Lake Vesijärvi was triggered by relatively recent anthropogenic stressors. The multi-core varve analysis revealed that sediment in the Enonsaari Deep was initially non-varved, but became fully varved in the late 1930s, a time of increasing anthropogenic influence on the lake. The largest spatial extent of varves occurred in the 1970s, which was followed by a period of less distinguishable varves, which coincided with diversion of sewage from the lake. Varve preservation weakened during subsequent decades and was terminated completely by lake aeration in the 2010s. Despite improvements in water quality, hypolimnetic oxygen depletion and varve preservation persisted beyond the reduction in sewage loading, initial aeration, and biomanipulation. These restoration efforts, however, along with other human actions such as harbor construction and dredging, did influence varve characteristics. Varves were also influenced by diatom responses to anthropogenic forcing, because diatoms form a substantial part of the varve structure. Of all the restoration efforts, a second episode of aeration seems to have had the single most dramatic impact on profundal conditions in the basin, resulting in replacement of a sediment accumulation zone by a transport or erosional zone in the Enonsaari Deep. We conclude that human activities in a lake and its catchment can alter lake hypolimnetic conditions, leading to shifts in lake bottom dynamics and changes in varve preservation.


2021 ◽  
Vol 261 ◽  
pp. 01064
Author(s):  
Lifang Zou ◽  
Ling Lin ◽  
Meifeng Ke ◽  
Chenhong Zheng ◽  
Shiming Zhang ◽  
...  

Under the new development pattern of dual circulation economy, the reform of state-owned enterprises has entered the deep water area, and the operating environment of power grid enterprises has changed significantly, which has a profound impact on the capital operation strategy and effect of the enterprises. This paper analyzes the new characteristics of capital operation of power grid enterprises under the new development pattern, constructs the incentive and restriction index system of capital operation of power grid enterprises, designs the incentive and restraint mechanism of capital operation of power grid enterprises, and verifies the scientificity and applicability of the mechanism by financial evaluation and analysis. The research results enrich the theory of capital operation management based on financial evaluation, and provide theoretical basis and practical reference for grid enterprises to optimize the distribution of capital investment and improve the efficiency of capital operation.


Sign in / Sign up

Export Citation Format

Share Document