ductal fluid
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

Pancreatology ◽  
2020 ◽  
Vol 20 ◽  
pp. S63
Author(s):  
E. Tóth ◽  
V. Venglovecz ◽  
P. Pallagi ◽  
Z. Rakonczay ◽  
J. Maléth ◽  
...  

Pancreatology ◽  
2019 ◽  
Vol 19 ◽  
pp. S18
Author(s):  
Emese Tóth ◽  
Pavana Rotti ◽  
Viktória Venglovecz ◽  
Petra Pallagi ◽  
Zoltán Rakonczay ◽  
...  

Pancreatology ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. S35
Author(s):  
Emese Tóth ◽  
József Maléth ◽  
Petra Pallagi ◽  
Viktória Venglovecz ◽  
Zoltán Rakonczay ◽  
...  

Pancreatology ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. S25-S26
Author(s):  
Viktória Venglovecz ◽  
Petra Pallagi ◽  
Eszter Becskeházi ◽  
Anita Balázs ◽  
Matthias Sendler ◽  
...  
Keyword(s):  

2017 ◽  
Vol 312 (2) ◽  
pp. G153-G163 ◽  
Author(s):  
Shelley Fong ◽  
John A Chiorini ◽  
James Sneyd ◽  
Vinod Suresh

Previous studies have shown that localized delivery of the aquaporin-1 (AQP1) gene to the parotid duct can restore saliva flow in minipigs following irradiation-induced salivary hypofunction. The resulting flow rate and electrochemistry of secreted saliva contradicts current understanding of ductal fluid transport. We hypothesized that changes in expression of ion transport proteins have occurred following AQP1 transfection. We use a mathematical model of ion and fluid transport across the parotid duct epithelial cells to predict the expression profile of ion transporters that are consistent with the experimental measurements of saliva composition and secretion rates. Using a baseline set of parameters, the model reproduces the data for the irradiated, non-AQP1-transfected case. We propose three scenarios which may have occurred after transfection, which differ in the location of the AQP1 gene. The first scenario places AQP1 within nonsecretory cells, and requires that epithelial sodium channel (ENaC) expression is greatly reduced (1.3% of baseline), and ductal bicarbonate concentration is increased from 40.6 to 137.0 mM, to drive water secretion into the duct. The second scenario introduces the AQP1 gene into all ductal cells. The final scenario has AQP1 primarily in the proximal duct cells which secrete water under baseline conditions. We find the change in the remaining cells includes a 95.8% reduction in ENaC expression, enabling us to reproduce all experimental ionic concentrations within 9 mM. These findings provide a mechanistic basis for the observations and will guide the further development of gene transfer therapy for salivary hypofunction. NEW & NOTEWORTHY Following transfection of aquaporin into the parotid ducts of minipigs with salivary hypofunction, the resulting increase in salivary flow rates contradicts current understanding of ductal fluid transport. We show that the change in saliva electrochemistry and flow rate can be explained by changes in expression of ion transporters in the ductal cell membranes, using a mathematical model replicating a single parotid duct.


2016 ◽  
Vol 49 (6) ◽  
pp. 2245-2254 ◽  
Author(s):  
Luisa Matos Do Canto ◽  
Catalin Marian ◽  
Rency S. Varghese ◽  
Jaeil Ahn ◽  
Patricia A. Da Cunha ◽  
...  

Pancreatology ◽  
2016 ◽  
Vol 16 (3) ◽  
pp. S22
Author(s):  
Eszter Becskeházi ◽  
Petra Pallagi ◽  
Anita Balázs ◽  
Matthias Sendler ◽  
Jens Kühn ◽  
...  

Pancreatology ◽  
2016 ◽  
Vol 16 (3) ◽  
pp. S23-S24
Author(s):  
Emese Tóth ◽  
Petra Pallagi ◽  
József Maléth ◽  
Viktória Venglovecz ◽  
Zoltán Rakonczay ◽  
...  

2016 ◽  
Vol 48 (5) ◽  
pp. 2071-2078 ◽  
Author(s):  
LUISA MATOS DO CANTO ◽  
CATALIN MARIAN ◽  
SHAWNA WILLEY ◽  
MARY SIDAWY ◽  
PATRICIA A. DA CUNHA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document