multichannel signal processing
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 13 (10) ◽  
pp. 1907
Author(s):  
Pengfei Zhao ◽  
Yunkai Deng ◽  
Wei Wang ◽  
Yongwei Zhang ◽  
Robert Wang

Hybrid and ±π/4 quadrature-polarimetric (quad-pol) synthetic aperture radar (SAR) systems operating from space can obtain all polarimetric components simultaneously but suffer from severe azimuth ambiguities in the cross-polarized (cross-pol) measurement channels. In this paper, the hybrid and ±π/4 quad-pol SAR systems with multiple receive channels in azimuth are widely investigated to suppress the azimuth ambiguities of the cross-pol components. We first provide a more thorough analysis of the multichannel hybrid and ±π/4 quad-pol SAR systems. Then, the multichannel signal processing is briefly discussed for the reconstruction of the quad-pol SAR signal from the aliased signals, in which the conventional reconstruction algorithm causes extremely severe azimuth ambiguities. To this end, an improved reconstruction method is proposed based on a joint optimization, which allows for the minimization of ambiguities from the desired polarization and the simultaneous power of undesired polarized signal. This method can largely suppress azimuth ambiguities compared with the conventional reconstruction algorithm. Finally, to verify the advantages and effectiveness of the proposed approach, the azimuth ambiguity-to-signal ratio (AASR), the range ambiguity-to-signal ratio (RASR) and signal-to-noise ratio (SNR) of all polarizations, as well as a set of imaging simulation results, are given to describe the effects of reconstruction on the multichannel hybrid and ±π/4 quad-pol SAR systems.


2018 ◽  
pp. 97-102
Author(s):  
Валерий Константинович Волосюк ◽  
Семён Сергеевич Жила ◽  
Глеб Сергеевич Черепнин ◽  
Эдуард Алексеевич Цернэ

The generalized structure of the electromagnetic field in the registration area is considered in the case of the solution of problems of remote sensing of the underlying surfaces. Examples of the existing radar and optical coherent devices are given. Analytical expressions for the electromagnetic field in the reception area when sounding is carried out in a near-field Fresnel region, in the assumption that the size of the field of registration and radiation is considerably less than a distance between them, are concretized. It is shown the main operations that are necessary for the recovery of coherent images in a near-field Fresnel region by the methods of multichannel signal processing. Research shows that as the amplitude-phase distribution of the registration field is necessary to choose the classical basic function of Fresnel transformation with the reversed sign in the exponent power. Formally, in an infinite range, the Fresnel transform is invertible, i.e. in the ideal case, the function can be completely restored. However physically to Fresnel's region satisfies area with finite sizes. From the analysis of the obtained operations over the received field, it follows that the radar or optical system forms an estimate of the coherent image in the form of a convolution of a true image of the underlying surface with an ambiguity function. Generally, this function contains two multipliers, one of which determines the resolution of recovery of the coherent image. In that specific case, when the linear sizes of the field of registration go to infinity, ambiguity function takes a form of delta function and the required image can be restored without distortions. It is offered to determine resolution by the width between first zeros of ambiguity function. For rectangular area ambiguity function has the form of two sinc functions which width is directly proportional to wavelength, to the height of sounding and is inversely proportional to the linear sizes of receiving area on the corresponding coordinates. Finally, it is mentioned that for the higher-quality coherent imaging with good resolution by the same receiving area it is necessary to perform scanning and movement in space


Sign in / Sign up

Export Citation Format

Share Document