surface microscopy
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 1)

Author(s):  
Lorenzo Rigutti ◽  
Enrico Di Russo ◽  
Florian Chabanais ◽  
Ivan Blum ◽  
Jonathan Houard ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiafang Liang ◽  
Quentin Parker

AbstractThis article presents a generic, objective and evidence based forensic study of 4 very different Chinese bronze mirrors. The work was done within the Architectural Conservation Laboratory (ACLab), the Department of Physics, the Faculty of Medicine and also the Planetary Spectroscopy and Mineralogy Laboratory (PSML) all at the University of Hong Kong. The mirrors nominally cover the period of the Warring States (475–221 BC), Han (206 BC to 220 AD) and later Song (960–1279AD) dynasties. Comprehensive, mostly non-invasive, analytical methods and techniques were used. These included surface microscopy of tool marks, patina, corrosion and any residual archaeological evidence. Ultraviolet radiation examination, chemical spot testing and polarised light microscopy of ground-up patina samples was also done. More sophisticated “pXRF” X-ray fluorescence, “MARS” tomographic X-ray scanning and infrared spectroscopic analysis of the bronze alloys, corrosions and any earthen encrustations were also performed. This was to uncover as much forensic evidence as possible for these unprovenanced bronze mirrors. The results have revealed key metallurgical information of those four mirrors along with surface patina morphology and details of the corrosion and residual surface archaeology. A database on the physical condition of these mirrors has been established and burial/treatment history revealed. Mirrors 1 and 2 appear to have been heavily cleaned, polished and treated with abrasives in modern times. Mirror 2 in particular, has some problematic corrosion and inconclusive alloy composition. Mirror 3 and 4 both have archaeological evidence and no contrary forensic data that questions authenticity. Forensic study and verification of objects and artworks for academic purposes remains a legitimate and vital undertaking for universities, museums and national collections across the globe. Hence, the issue of authenticity when archaeological context is lacking is discussed. However, our key aim is to establish what can be learnt from technological, forensic investigation when studying bronze mirrors without further context and records, and what firm, generic evidence can be extracted from such close forensic examination to shed light on their true nature. We hope this will be useful for other researchers.


2021 ◽  
Author(s):  
Jiafang Liang ◽  
Quentin Parker

Abstract This article presents a generic, objective and evidence based forensic study of 4 very different Chinese bronze mirrors. The work was done within the Architectural Conservation Laboratory (ACLab), the Department of Physics and also the Planetary Spectroscopy and Mineralogy Laboratory (PSML) at the University of Hong Kong. The mirrors nominally cover the period of the Warring States (475-221BC), Han (206 BC to 220AD) and later Song (960-1279AD) dynasties. Comprehensive, mostly non-invasive, analytical methods and techniques were used. These included surface microscopy of tool marks, patina, corrosion and any residual archaeological evidence. Ultraviolet radiation examination, chemical spot testing and polarised light microscopy of ground-up patina samples was also done. More sophisticated “pXRF” X-ray fluorescence , “MARS” tomographic X-ray scanning and infrared spectroscopic analysis of the bronze alloys, corrosions and any earthen encrustations were also performed. This was to uncover as much forensic evidence as possible for these unprovenanced bronze mirrors. The results have revealed key metallurgical information of those four mirrors along with surface patina morphology and details of the corrosion and residual surface archaeology. A database on the physical condition of these mirrors has been established and burial/treatment history revealed. Mirrors 1 and 2 appear to have been heavily cleaned, polished and treated with abrasives in modern times. Mirror 2 in particular, has some problematic corrosion and inconclusive alloy composition. Mirror 3 and 4 both have archaeological evidence and no contrary forensic data that questions authenticity. Forensic study and verification of objects and artworks for academic purposes remains a legitimate and vital undertaking for universities, museums and national collections across the globe. Hence, the issue of authenticity when archaeological context is lacking is discussed. However, our key aim is to establish what can be learnt from technological, forensic investigation when studying bronze mirrors without further context and records, and what firm, generic evidence can be extracted from such close forensic examination to shed light on their true nature. We hope this will be useful for other researchers.


Author(s):  
KR Chatura ◽  
CN Aarthy

Scapulothoracic bursitis is a rare disease which is caused from the inflammation of the bursa secondary to trauma or its overuse, owing to sports activities or work. It usually presents with pain, swelling without redness at the scapulothoracic interface. A 22-year-old male presented to the surgeon with the swelling in the left scapular region following a history of trauma. Ultrasound (USG) showed a large loculated fluid collection with internal debris outside the muscular plane. With the clinical diagnosis of haematoma surgical resection was done. It showed a cystic swelling containing haemorrhagic fluid attached to the chest wall. The specimen was sent for histopathological correlation. The thickened cystic structure had numerous rice grain like loose bodies on the inner surface. Microscopy showed fibrocollageneous wall with congested blood vessels, granulation tissue, fibrinoid bodies and macrophages. This case report describes a cystic lesion in left scapular region diagnosed as a case of scapulothoracic bursitis based on pathological correlation. Surgery was an effective treatment for this case with no complication and recurrence on follow-up.


2020 ◽  
Vol 27 (11) ◽  
pp. 2030001
Author(s):  
ZHANG YANCONG ◽  
DOU LINBO ◽  
MA NING ◽  
WU FUHUA ◽  
NIU JINCHENG

Electrospun technology is a simple and flexible method for preparation of nanofiber materials with unique physical and chemical properties. The nanofiber diameter is adjustable from several nanometers to few microns during the preparation. Electrospun nanofiber materials are easy to be assembled into different shapes of three-dimensional structures. These materials exhibit high porosity and surface area and can simulate the network structures of collagen fibers in a natural extracellular matrix, thereby providing a growth microenvironment for tissue cells. Electrospun nanofibers therefore have extensive application prospects in the biomedicine field, including in aerospace, filtration, biomedical applications, and biotechnology. Nanotechnology has the potential to revolutionize many fields, such as surface microscopy, silicon fabrication, biochemistry, molecular biology, physical chemistry, and computational engineering, while the advent of nanofibers has increased the understanding of nanotechnology among academia, industry, and the general public. This paper mainly introduces the application of nanofiber materials in tissue engineering, drug release, wound dressing, and other biomedicine fields.


Surfaces ◽  
2020 ◽  
Vol 3 (3) ◽  
pp. 328-336
Author(s):  
Wei Wei ◽  
Guanhua Zhang ◽  
Jiaqi Pan ◽  
Yi Cui ◽  
Qiang Fu

Vertically stacked hexagonal boron nitride (h-BN)/graphene heterostructures present potential applications in electronic, photonic, and mechanical devices, and their interface interaction is one of the critical factors that affect the performances. In this work, the vertical h-BN/graphene heterostructures with high coverage are synthesized by chemical vapor deposition (CVD) of h-BN on Ni substrates followed by segregation growth of graphene at the h-BN/Ni interfaces, which are monitored by in situ surface microscopy and surface spectroscopy. We find that h-BN overlayers can be decoupled from Ni substrates by the graphene interlayers. Furthermore, the h-BN domain boundaries exhibit a confinement effect on the graphene interlayer growth and the lower graphene domains are limited within the upper h-BN domains. This work provides new insights into the formation mechanism and interface interaction of the vertical heterostructures.


Sign in / Sign up

Export Citation Format

Share Document