flow over a cavity
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 3)

H-INDEX

12
(FIVE YEARS 1)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7545
Author(s):  
Sebastian Rulik ◽  
Włodzimierz Wróblewski ◽  
Krzysztof Rusin

Flow over a cavity or a gap may induce pressure fluctuations that are emitted as sound waves and perceived by a human as noise. This phenomenon may occur in different kinds of industrial machines or in everyday life devices, e.g., cars. For this reason, it is important to predict the flow conditions that intensify or attenuate the noise. This research paper presents the numerical and experimental analysis of the pressure fluctuations in a deep, ducted cavity. The experimental test stand made it possible to investigate the flow over a cavity with air velocity in the range of 30–80 m/s. The pressure fluctuations were measured using miniature microphones located in the duct and the cavity wall and processed with LabView software. The phenomena were also analysed using the computational fluid dynamics (CFD) technique. The several modelling approaches were tested and validated against the experimental data. The highest sound pressure levels were obtained for 40 and 70 m/s. The sound frequency increased with the flow velocity.


2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Yuchuan Wang ◽  
Lei Tan ◽  
Binbin Wang ◽  
Shuliang Cao ◽  
Baoshan Zhu

Large eddy simulation (LES) approach was used to investigate jumps of primary frequency of shear layer flow over a cavity. Comparisons between computational results and experimental data show that LES is an appropriate approach to accurately capturing the critical values of velocity and cavity length of a frequency jump, as well as characteristics of the separated shear layer. The drive force of the self-sustained oscillation of impinging shear layer is fluid injection and reinjection. Flow patterns in the shear layer and cavity before and after the frequency jump demonstrate that the frequency jump is associated with vortex–corner interaction. Before frequency jump, a mature vortex structure is observed in shear layer. The vortex is clipped by impinging corner at approximately half of its size, which induces strong vortex–corner interaction. After frequency jump, successive vortices almost escape from impinging corner without the generation of a mature vortex, thereby indicating weaker vortex–corner interaction. Two wave peaks are observed in the shear layer after the frequency jump because of: (1) vortex–corner interaction and (2) centrifugal instability in cavity. Pressure fluctuations inside the cavity are well regulated with respect to time. Peak values of correlation coefficients close to zero time lags indicate the existence of standing waves inside the cavity. Transitions from a linear to a nonlinear process occurs at the same position (i.e., x/H = 0.7) for both velocity and cavity length variations. Slopes of linear region are solely the function of cavity length, thereby showing increased steepness with increased cavity length.


2014 ◽  
Vol 554 ◽  
pp. 296-300 ◽  
Author(s):  
Nor Azwadi Che Sidik ◽  
Aman Ali Khan

This article provides numerically study of the multi-relaxation time thermal lattice Boltzmann method (LBM) for compute the flow and isotherm characteristics in the bottom heated cavity located o n a floor of horizontal channel . A double-distribution function (DFF) was coupled with MRT thermal LBM to study the effects of various grashof number (Gr), Reynolds number (Re) and Aspect Ratio (AR) on the flow and isotherm characteristic. The results we re compared with the conventional single-relaxation time lattice Boltzmann scheme and benchmark solution for such flow configuration. The results of the numer ical simulation indicate that multi-relaxation time thermal lattice Boltzmann scheme demonstrated good agreement, which supports its validity in computing fluid flow problem.


2013 ◽  
Vol 717 ◽  
pp. 376-394 ◽  
Author(s):  
Clarissa Schönecker ◽  
Steffen Hardt

AbstractAn analytical solution for the low-Reynolds-number flow field of a shear flow over a rectangular cavity containing a second immiscible fluid is derived. While flow of a single-phase fluid over a cavity is a standard case investigated in fluid dynamics, flow over a cavity that is filled with a second immiscible fluid has received little attention. The flow field inside the cavity is considered to define a boundary condition for the outer flow, which takes the form of a Navier slip condition with locally varying slip length. The slip-length function is determined heuristically from the related problem of lid-driven cavity flow. Based on the Stokes equations and complex analysis, it is then possible to derive a closed analytical expression for the flow field over the cavity for both the transverse and the longitudinal case. The result is a comparatively simple function, which displays the dependence of the flow field on the cavity geometry and the medium filling the cavity. The analytically computed expression agrees well with results obtained from a numerical solution of the Navier–Stokes equations.


2012 ◽  
Vol 98 (4) ◽  
pp. 600-610 ◽  
Author(s):  
Yiping Wang ◽  
Hsu Chew Lee ◽  
Kai Ming Li ◽  
Zhengqi Gu ◽  
Jun Chen

Sign in / Sign up

Export Citation Format

Share Document