transcorneal permeability
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 72 (7) ◽  
pp. 889-896
Author(s):  
Bakoliarisoa Nivomalala Voahangy Rasoanirina ◽  
Mohamed Ali Lassoued ◽  
Karim Miladi ◽  
Zoarilala Razafindrakoto ◽  
Raja Chaâbane‐Banaoues ◽  
...  

2020 ◽  
Vol 25 (6) ◽  
pp. 694-703 ◽  
Author(s):  
Bakoliarisoa Nivomalala Voahangy Rasoanirina ◽  
Mohamed Ali Lassoued ◽  
Amel Kamoun ◽  
Badr Bahloul ◽  
Karim Miladi ◽  
...  

Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 33 ◽  
Author(s):  
Akshaya Tatke ◽  
Narendar Dudhipala ◽  
Karthik Janga ◽  
Sai Balguri ◽  
Bharathi Avula ◽  
...  

Triamcinolone acetonide (TA), an intermediate acting corticosteroid, is used in the treatment of posterior ocular diseases, such as inflammation, posterior uveitis, and diabetic macular edema. The objective of this investigation was to prepare TA-loaded solid lipid nanoparticles (TA-SLNs) and in situ gel (TA-SLN-IG) formulations for delivery into the deeper ocular tissues through the topical route. TA-SLNs were prepared by hot homogenization and ultrasonication method using glyceryl monostearate and Compritol® 888ATO as solid lipids and Tween®80 and Pluronic® F-68 as surfactants. TA-SLNs were optimized and converted to TA-SLN-IG by the inclusion of gellan gum and evaluated for their rheological properties. In vitro transcorneal permeability and in vivo ocular distribution of the TA-SLNs and TA-SLN-IG were studied using isolated rabbit corneas and New Zealand albino rabbits, respectively, and compared with TA suspension, used as control (TA-C). Particle size, PDI, zeta potential, assay, and entrapment efficiency of TA-SLNs were in the range of 200–350 nm, 0.3–0.45, −52.31 to −64.35 mV, 70–98%, and 97–99%, respectively. TA-SLN-IG with 0.3% gellan gum exhibited better rheological properties. The transcorneal permeability of TA-SLN and TA-SLN-IG was 10.2 and 9.3-folds higher compared to TA-C. TA-SLN-IG showed maximum tear concentration at 2 h, indicating an improved pre-corneal residence time, as well as higher concentrations in aqueous humor, vitreous humor and cornea at 6 h, suggesting sustained delivery of the drug into the anterior and posterior segment ocular tissues, when compared to TA-SLN and TA-C. The results, therefore, demonstrate that the lipid based nanoparticulate system combined with the in situ gelling agents can be a promising drug delivery platform for the deeper ocular tissues.


2012 ◽  
Vol 101 (2) ◽  
pp. 616-626 ◽  
Author(s):  
Tushar Hingorani ◽  
Waseem Gul ◽  
Mahmoud Elsohly ◽  
Michael A. Repka ◽  
Soumyajit Majumdar

2011 ◽  
Vol 12 (2) ◽  
pp. 723-731 ◽  
Author(s):  
Ketan Hippalgaonkar ◽  
Waseem Gul ◽  
Mahmoud A. ElSohly ◽  
Michael A. Repka ◽  
Soumyajit Majumdar

Sign in / Sign up

Export Citation Format

Share Document