formulation variables
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 44)

H-INDEX

37
(FIVE YEARS 3)

Author(s):  
Sema Arisoy ◽  
Tansel Comoglu

Levodopa is used for the treatment of Parkinson’s disease (PD) for the last few decades. However, adverse reactions such as dyskinesia, somnolence, nausea, itching, rash, as well as the need for frequent dosing and low bioavailability problems affect the success of the treatment. To prevent side effects caused by conventional therapy, a nanoparticular drug delivery system has been developed, in which receptors are constantly stimulated, and the frequency of dosing is reduced. In this study, levodopa was loaded in Poly lactic-co-glycolic acid (PLGA) nanoparticles (NP) which modified with Wheat Germ Agglutinin (WGA) To increase the effectiveness of levodopa, reduce its side effects and apply to the nasal area which is an alternative way for brain targeting with lower doses. To obtain the optimum levodopa loaded PLGA nanoparticles, the effect of some formulation variables such as polyvinyl alcohol (PVA) concentration, homogenization speed, polymer amount and molecular weight, and levodopa content on the entrapment efficiency (EE) and particle size of the nanoparticles were investigated. Besides these variables, the effect of different parameters on the WGA binding constant was also searched. In addition to in vitro release studies, Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectrophotometer (FT-IR), and Transmission electron microscopy (TEM) analysis were used in the characterization of nanoparticles. Among all formulations, A2 and A8a which was produced with different molcular weights of PLGA, different added levodopa amounts and with different homogenization speeds were chosen as optimum formulations due to their sustained release properties and the ability to release 80 % of their drug content.WGA binding constant was found 78.20 % for A8a-1 and 95 % for A2-1. In this study, we aimed to determine the effect of different formulation parameters on the development of levodopa loaded and WGA grafted PLGA nanoparticles and on the quality characteristics of nanoparticle formulations such as particle size, zeta potential, and EE. In this paper, our results are demonstrated for a better understanding of the effect of process parameters on the development of nanoparticle-based drug delivery systems by using the double-emulsion solvent evaporation technique and on WGA binding of drug-loaded PLGA nanoparticles.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Lavinia Vlaia ◽  
Ioana Olariu ◽  
Ana Maria Muţ ◽  
Georgeta Coneac ◽  
Vicenţiu Vlaia ◽  
...  

Biocompatible gel microemulsions containing natural origin excipients are promising nanocarrier systems for the safe and effective topical application of hydrophobic drugs, including antifungals. Recently, to improve fluconazole skin permeation, tolerability and therapeutic efficacy, we developed topical biocompatible microemulsions based on cinnamon, oregano or clove essential oil (CIN, ORG or CLV) as the oil phase and sucrose laurate (D1216) or sucrose palmitate (D1616) as surfactants, excipients also possessing intrinsic antifungal activity. To follow up this research, this study aimed to improve the adhesiveness of respective fluconazole microemulsions using chitosan (a biopolymer with intrinsic antifungal activity) as gellator and to evaluate the formulation variables’ effect (composition and concentration of essential oil, sucrose ester structure) on the gel microemulsions’ (MEGELs) properties. All MEGELs were evaluated for drug content, pH, rheological behavior, viscosity, spreadability, in vitro drug release and skin permeation and antifungal activity. The results showed that formulation variables determined distinctive changes in the MEGELs’ properties, which were nevertheless in accordance with official requirements for semisolid preparations. The highest flux and release rate values and large diameters of the fungal growth inhibition zone were produced by formulations MEGEL-FZ-D1616-CIN 10%, MEGEL-FZ-D1216-CIN 10% and MEGEL-FZ-D1616-ORG 10%. In conclusion, these MEGELs were demonstrated to be effective platforms for fluconazole topical delivery.


Author(s):  
Mostafa Rostamnezhad ◽  
Hossein Jafari ◽  
Farzad Moradikhah ◽  
Sara Bahrainian ◽  
Homa Faghihi ◽  
...  

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Sagar S. Bachhav ◽  
Poonam Sheth ◽  
Dennis Sandell ◽  
Mårten Svensson ◽  
Sharvari Bhagwat ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1635
Author(s):  
Haidy Abbas ◽  
Heba A. Gad ◽  
Mohamed A. Khattab ◽  
Mai Mansour

Alzheimer’s disease (AD) is a neurodegenerative disease where oxidative stress plays a major role as a key pathologic factor. The study aims to develop resveratrol (RES)-loaded bilosomes for oral use, aiming to enhance RES bioavailability. RES-loaded bilosomes were prepared using the thin-film hydration technique. The effect of different formulation variables viz. the number of extrusion cycles, drug concentration and the effect of pH of the medium and cholesterol addition on the physicochemical properties of the prepared bilosomes was investigated. Results revealed the successful entrapment of RES into bilosomes. An optimized formula was selected, showing the lowest particle size (189 ± 2.14), acceptable PDI (0.116) and entrapment efficiency (76.2 ± 1.36). In vivo studies on a streptozotocin-induced animal model of AD showed the preeminence of bilosomes over traditional drug suspension to enhance mice memory via Y-maze and Morris water maze tests. Moreover, mice treated with the optimized formula exhibited decreased COX2, IL-6, amyloid-beta peptide and Tau protein levels compared to the drug suspension. Immuno-histochemical analysis revealed a significant decrease of glial fibrillary acidic protein values and microglial cell count in mice treated with bilosomes. Finally, it could be advocated that RES-loaded bilosomes could be a promising drug delivery system to control AD.


2021 ◽  
Author(s):  
Vishal Gurumukhi ◽  
Sanjaykumar Bari

Abstract The objective of the present work was to optimize ritonavir (RTV) loaded nanostructured lipid carriers (NLCs) to improve bioavailability using quality by design (QbD) based technique. Risk assessment was studied using ‘cause and effect’ diagram followed by failure mode effect analysis (FMEA) to identify the effective high-risk variables for the formulation development. Quality target product profile (QTPP) and critical quality attributes (CQAs) were initially assigned for the proposed product. Central composite rotatable design (CCRD) was used to identify the individual and combined interactions of formulation variables. RTV loaded NLC (RTV-NLC) was prepared using emulsification-ultrasonication method. The effect of formulation variables like ultrasound amplitude, lipid concentration, surfactant concentration on their responses like particle size, polydispersity index (PDI), and entrapment efficiency (EE) were studied by CCRD. The optimized formulation was subjected to lyophilization to obtain dry NLCs for solid-state analysis. DSC and PXRD investigations showed RTV was molecularly dispersed in lipid matrix indicating amorphous form present in the formulation. FESEM and AFM depicted the spherical and uniform particles. The enhanced solubility and dissolution may be attributed due to the reduced particle size. The optimized NLCs showed good physical stability during storage for six months. RTV-NLC was further subjected to in vitro studies and found a successful sustained release rate of 92.37±1.03 %. The parallel artificial membrane permeability assay (PAMPA) and everted gut sac model have demonstrated the permeation enhancement of RTV. In vivo study observed the enhanced bioavailability with 2.86 fold suggesting optimized NLC successfully overcome the issue of solubility.


2021 ◽  
Vol 5 (1) ◽  
pp. 59-67
Author(s):  
Suelen Da Silva Reis ◽  
Valdemir Da Silva Quintanilha Junior ◽  
Gabriella Da Silva Boto ◽  
Thalita Martins Da Silva ◽  
Elizabeth Valverde Macedo ◽  
...  

Campus compounding pharmacies play an important role in public health. Herpes simplex is one of the most common viral diseases in humans, which generates a great demand for acyclovir capsules in compounding pharmacy. It is well known that the formulation's components influence the effectiveness of the drug. The objective of this study is to show the applicability of Box-Behnken design in optimization of a compounded formulation and to evaluate the effect of excipients on dissolution and drug content in acyclovir 200 mg capsules produced at UFF´s University Pharmacy (FAU). The formulations were prepared and evaluated for average weight test, uniformity of dosage units and in vitro dissolution, while meeting pharmacopoeial specifications. A statistical analysis showed that sodium starch glycolate, Aerosil®, influences drug content and dissolution results. Magnesium stearate shows no influence on the dissolution at different concentrations but influences the assay results. A numerical optimization was applied to adjust the formulation variables based on the foresaid responses, accomplishing the best formulation that will be prepared and dispensed at FAU upon medical prescription.


Author(s):  
Henna Juvonen ◽  
Osmo Antikainen ◽  
Marijke Lemmens ◽  
Henrik Ehlers ◽  
Anne Juppo

Sign in / Sign up

Export Citation Format

Share Document