scholarly journals Self‐nanoemulsifying drug delivery system to improve transcorneal permeability of voriconazole: in‐vivo studies

2020 ◽  
Vol 72 (7) ◽  
pp. 889-896
Author(s):  
Bakoliarisoa Nivomalala Voahangy Rasoanirina ◽  
Mohamed Ali Lassoued ◽  
Karim Miladi ◽  
Zoarilala Razafindrakoto ◽  
Raja Chaâbane‐Banaoues ◽  
...  
2021 ◽  
Vol 18 ◽  
Author(s):  
Subheet Kumar Jain ◽  
Neha Panchal ◽  
Amrinder Singh ◽  
Shubham Thakur ◽  
Navid Reza Shahtaghi ◽  
...  

Background: Diclofenac sodium (DS) injection is widely used in the management of acute or chronic pain and inflammatory diseases. It incorporates 20 % w/v Transcutol-P as a solubilizer to make the stable injectable formulation. However, the use of Transcutol-P in high concentration leads to adverse effects such as severe nephrotoxicity, etc. Some advancements resulted in the formulation of an aqueous based injectable but that too used benzyl alcohol reported to be toxic for human use. Objective: To develop an injectable self-micro emulsifying drug delivery system (SMEDDS) as a novel carrier of DS for prompt release with better safety and efficacy. Methods: A solubility study was performed with different surfactants and co-surfactants. The conventional stirring method was employed for the formulation of SMEDDS. Detailed in vitro characterization was done for different quality control parameters. In vivo studies were performed using Wistar rats for pharmacokinetic evaluation, toxicological analysis, and analgesic activity. Results: The optimized formulation exhibited good physical stability, ideal globule size (156±0.4 nm), quick release, better therapeutics, and safety, increase in LD50 (221.9 mg/kg) to that of the commercial counterpart (109.9 mg/kg). Further, pre-treatment with optimized formulation reduced the carrageenan-induced rat paw oedema by 88±1.2 % after 4 h, compared to 77±1.6 % inhibition with commercial DS formulation. Moreover, optimized formulation significantly (p<0.05) inhibited the pain sensation in the acetic-acid induced writhing test in mice compared to its commercial equivalent with a better pharmacokinetic profile. Conclusion: The above findings confirmed that liquid SMEDDS could be a successful carrier for the safe and effective delivery of DS


1984 ◽  
Vol 10 (1-3) ◽  
pp. 263-265 ◽  
Author(s):  
P. Maincent ◽  
J. P. Devissaguet ◽  
R. LeVerge ◽  
P. A. Sado ◽  
P. Couveur

2020 ◽  
Vol 108 (10) ◽  
pp. 809-819 ◽  
Author(s):  
Basma M. Essa ◽  
Ahmed A. El-Mohty ◽  
Maher A. El-Hashash ◽  
Tamer M. Sakr

AbstractTargeted drug delivery system can reduce the side effects of high drug concentration by improving drug pharmacokinetics at lower doses. Citrate-gold nanoparticles (AuNPs) as a drug delivery system were synthesized via green nanotechnology technique to be used as a new imaging platform for tumor targeting. Citrate-AuNPs were synthesized with core size of 10 nm. Citrate-AuNPs were labeled with technetium-99m (99mTc) with radiochemical yield of 95.20 ± 2.70% with good in-vitro stability in both saline and human serum and well in-vivo studied in both normal and solid tumor bearing mice. The in-vivo biodistribution study of [99mTc]Tc-citrate-AuNPs in solid tumor bearing mice (as preliminary study) showed a high accumulation in tumor site with tumor/muscle of 4.35 ± 0.22 after 30 min post injection. The direct intratumoral (I.T) injection of [99mTc]Tc-citrate-AuNPs showed that this complex was retained in the tumor up to 77.86 ± 1.90 % at 5 min and still around 50.00 ± 1.42 % after 30 min post injection (p.i.). The newly presented nano-platform could be presented as a new potential radiopharmaceutical tumor imaging probe.


2021 ◽  
Vol 11 ◽  
Author(s):  
Priya Kumari ◽  
Shaweta Sharma ◽  
Pramod Kumar Sharma ◽  
Mohd Aftab Alam

Background and Objective: In the current era of advancement in the field of pharmaceutics, there is a growing interest in applying nanomedicine technology for active phytoconstituents and herbal extracts. This revolution in the area of herbal medicine has led to the growth of different technological approaches for delivering poorly soluble active herbal constituents or phytoconstituents, and herbal extract to enhance the safety, bioavailability, efficacy as well as receptor binding selectivity of the active entity. These nano-medicinal approaches have shown to be more effective and reliable delivery system for herbal drugs. Niosomes are one of the novel drug delivery system approaches that have shown promising results when employed in the delivery of many drugs including herbal drugs. The term ‘phytoniosomes’ as mentioned in various research papers are phyto/herbal drugs encapsulated in a non-ionic vesicular system. During the past decade, several research articles have been published on the development and characterization of phytoniosome nano-vesicle along with their in vivo studies as well as delivery approaches via different routes. Methods: During the writing of this document, the data was derived from existing original research papers gathered from a variety of sources such as PubMed, Google Scholar, Science Direct, etc. Conclusion: This review discusses various aspects of phytoniosomes covering different areas such as techniques and methods involved in their preparation, various factors affecting their physicochemical properties while developing phytoniosomes, their characterization, and several applications and advantages.


2015 ◽  
Vol 73 (5) ◽  
pp. 1229-1245 ◽  
Author(s):  
Sayed H. Auda ◽  
Dina Fathalla ◽  
Gihan Fetih ◽  
Mahmoud El-Badry ◽  
Faiyaz Shakeel

Sign in / Sign up

Export Citation Format

Share Document