quiet sitting
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Matija Milosevic ◽  
Kei Masani ◽  
Noel Wu ◽  
Kristiina M. V. McConville ◽  
Milos R. Popovic

Background The purpose of this study was to examine the impact of functional electrical stimulation (FES) induced co-activation of trunk muscles during quiet sitting. We hypothesized that FES applied to the trunk muscles will increase trunk stiffness. The objectives of this study were to: 1) compare the center of pressure (COP) fluctuations during unsupported and FES-assisted quiet sitting - an experimental study and; 2) investigate how FES influences sitting balance - an analytical (simulation) study. Methods The experimental study involved 15 able-bodied individuals who were seated on an instrumented chair. During the experiment, COP of the body projected on the seating surface was calculated to compare sitting stability of participants during unsupported and FES-assisted quiet sitting. The analytical (simulation) study examined dynamics of quiet sitting using an inverted pendulum model, representing the body, and a proportional-derivative (PD) controller, representing the central nervous system control. This model was used to analyze the relationship between increased trunk stiffness and COP fluctuations. Results In the experimental study, the COP fluctuations showed that: i) the mean velocity, mean frequency and the power frequency were higher during FES-assisted sitting; ii) the frequency dispersion for anterior-posterior fluctuations was smaller during FES-assisted sitting; and iii) the mean distance, range and centroidal frequency did not change during FES-assisted sitting. The analytical (simulation) study showed that increased mechanical stiffness of the trunk had the same effect on COP fluctuations as the FES. Conclusions The results of this study suggest that FES applied to the key trunk muscles increases the speed of the COP fluctuations by increasing the trunk stiffness during quiet sitting.


2021 ◽  
Author(s):  
Matija Milosevic ◽  
Kei Masani ◽  
Noel Wu ◽  
Kristiina M. V. McConville ◽  
Milos R. Popovic

Background The purpose of this study was to examine the impact of functional electrical stimulation (FES) induced co-activation of trunk muscles during quiet sitting. We hypothesized that FES applied to the trunk muscles will increase trunk stiffness. The objectives of this study were to: 1) compare the center of pressure (COP) fluctuations during unsupported and FES-assisted quiet sitting - an experimental study and; 2) investigate how FES influences sitting balance - an analytical (simulation) study. Methods The experimental study involved 15 able-bodied individuals who were seated on an instrumented chair. During the experiment, COP of the body projected on the seating surface was calculated to compare sitting stability of participants during unsupported and FES-assisted quiet sitting. The analytical (simulation) study examined dynamics of quiet sitting using an inverted pendulum model, representing the body, and a proportional-derivative (PD) controller, representing the central nervous system control. This model was used to analyze the relationship between increased trunk stiffness and COP fluctuations. Results In the experimental study, the COP fluctuations showed that: i) the mean velocity, mean frequency and the power frequency were higher during FES-assisted sitting; ii) the frequency dispersion for anterior-posterior fluctuations was smaller during FES-assisted sitting; and iii) the mean distance, range and centroidal frequency did not change during FES-assisted sitting. The analytical (simulation) study showed that increased mechanical stiffness of the trunk had the same effect on COP fluctuations as the FES. Conclusions The results of this study suggest that FES applied to the key trunk muscles increases the speed of the COP fluctuations by increasing the trunk stiffness during quiet sitting.


2020 ◽  
Vol 76 ◽  
pp. 218-223
Author(s):  
Olivia Bernadette Näf ◽  
Christoph Michael Bauer ◽  
Christian Zange ◽  
Fabian Marcel Rast

Author(s):  
John Allen Tucker

In Tokugawa intellectual historiography, Fujiwara Seika has been traditionally deemed the founding father of the Zhu Xi school of neo-Confucianism in Japan. He emphasized seiza (quiet-sitting) in order to perceive the ethical essence of human nature, and asserted the priority of principle, moving away from dualism towards a more rationalistic monism.


2018 ◽  
Vol 120 (1) ◽  
pp. 37-52 ◽  
Author(s):  
Adam D. Goodworth ◽  
Kimberly Tetreault ◽  
Jeffrey Lanman ◽  
Tate Klidonas ◽  
Seyoung Kim ◽  
...  

We developed a sway-referenced system for sitting to highlight the role of vestibular and visual contributions to trunk control. Motor control was investigated by measuring trunk kinematics in the frontal plane while manipulating visual availability and introducing a concurrent cognitive task. We examined motor learning on three timescales (within the same trial, minutes), within the same test session (1 h), and between sessions (1 wk). Posture sway was analyzed through time-based measures [root mean square (RMS) sway and RMS velocity], frequency-based measures (amplitude spectra), and parameterized feedback modeling. We found that posture differed in both magnitude and frequency distribution during sway referencing compared with quiet sitting. Modeling indicated that sway referencing caused greater uncertainty/noise in sensory feedback and motor outputs. Sway referencing was also associated with lower active stiffness and damping model parameters. The influence of vision and a cognitive task was more apparent during sway referencing compared with quiet sitting. Short-term learning was reflected by reduced RMS velocity in quiet sitting immediately following sway referencing. Longer term learning was evident from one week to the next, with a 23% decrease in RMS sway and 9% decrease in RMS velocity. These changes occurred predominantly during cognitive tests at lower frequencies and were associated with lower sensory noise and higher stiffness and integral gains in the model. With the findings taken together, the sitting sway-referenced test elicited neural changes consistent with optimal integration and sensory reweighting, similar to standing, and should be a valuable tool to closely examine sensorimotor control of the trunk. NEW & NOTEWORTHY We developed the first sway-referenced system for sitting to highlight the role of vestibular and visual contributions to trunk control. A parametric feedback model explained sensorimotor control and motor learning in the task with and between two test sessions. The sitting sway-referenced test elicited neural changes consistent with optimal integration and sensory reweighting, similar to standing, and should be a valuable tool to closely examine sensorimotor control of the trunk.


2017 ◽  
Vol 58 ◽  
pp. 446-452 ◽  
Author(s):  
Matija Milosevic ◽  
Dany H. Gagnon ◽  
Philippe Gourdou ◽  
Kimitaka Nakazawa

2017 ◽  
Vol 3 ◽  
pp. 233372141773321 ◽  
Author(s):  
Kenneth J. McLeod ◽  
Teesta Jain

Background: Cognitive decline in the elderly is associated with chronic cerebral hypoperfusion. While many forms of exercise can slow or reverse cognitive decline, compliance in unsupervised exercise programs is poor. Objective: We address whether passive exercise, that is, muscle stimulation, is capable of reversing postural hypotension in an older adult population sufficiently to significantly improve cognitive function as measured by executive function tests. Subjects and Methods: In this study, 50- to 80-year-old women underwent cognitive testing, long-duration cardiac hemodynamic recordings during quiet sitting, and 60 min of soleus muscle stimulation with continued hemodynamic recording. Results: Two thirds of our subjects were hypotensive (diastolic blood pressure [DBP] < 70 mmHg) after 30 min of quiet sitting. Cognitive performance was significantly better in individuals with higher DBPs (0.79 s per 1-mmHg increase in DBP). Soleus muscle stimulation resulted in an average increase in DBP of 6.1 mmHg, which could translate into a 30% or greater improvement in cognitive performance. Conclusions: Incongruent Stroop testing provides high statistical power for distinguishing differential cognitive responses to resting DBP levels. These results set the stage to investigate whether regular use of calf muscle pump stimulation could effectively reverse age-related cognitive impairment.


Sign in / Sign up

Export Citation Format

Share Document