spinning behaviour
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

7
(FIVE YEARS 1)

2019 ◽  
Vol 880 ◽  
pp. 620-652 ◽  
Author(s):  
Kenta Ishimoto

We have investigated the dynamics of a monotrichous bacteria cell near a wall boundary, taking elastic hook flexibility into consideration. Combining theoretical linear stability analysis and direct numerical computations via the boundary element method, we have found that the elastohydrodynamic coupling between the hook elasticity and cell rotational motion enables a stable vertical spinning behaviour like a low-Reynolds-number spinning top. The forwardly rotated flagellum, which generates the force exertion pushing towards the cell body, typically destabilizes the vertical upright position and leads to a boundary-following motion. In contrast, the backward rotation of the flagellum, generating a force pulling the cell body, contributes to stable upright behaviour in a large range of hook rigidity. Further numerical investigations have demonstrated that the non-spherical geometry of the cell body and boundary adhesive interactions affect the bacterial dynamics, leading to complex behaviours such as horizontal spinning and unstable vertical spinning motions, both of which are experimentally observed in Pseudomonas aeruginosa bacteria. These results highlight the rich diversity of bacterial surface motility emerging from mechanical boundary interactions coupled with the cell swimming and hook flexibility.


2017 ◽  
Vol 14 (128) ◽  
pp. 20170007 ◽  
Author(s):  
Jonas O. Wolff ◽  
Julia Lovtsova ◽  
Elena Gorb ◽  
Zhendong Dai ◽  
Aihong Ji ◽  
...  

Silks play an important role in the life of various arthropods. A highly neglected prerequisite to make versatile use of silks is sufficient attachment to substrates. Although there have been some studies on the structure and mechanics of silk anchorages of spiders, for insects only anecdotal reports on attachment-associated spinning behaviour exist. Here, we experimentally studied the silk attachment of the pupae and last instar caterpillars of the tea bagworm Eumeta minuscula (Butler 1881) (Lepidoptera, Psychidae) to the leaves of its host plant Ilex chinensis . We found that the bagworms spin attachment discs, which share some structural features with those of spiders, like a plaque consisting of numerous overlaid, looped glue-coated silk fibres and the medially attaching suspension thread. Although the glue, which coats the fibres, cannot spread and adhere very well to the leaf surface, high pull-off forces were measured, yielding a mean safety factor (force divided by the animal weight) of 385.6. Presumably, the bagworms achieve this by removal of the leaf epidermis prior to silk attachment, which exposes the underlying tissue that represents a much better bonding site. This ensures a reliable attachment during the immobile, vulnerable pupal stage. This is the first study on the biomechanics and structure of silk attachments to substrates in insects.


2016 ◽  
Vol 13 (115) ◽  
pp. 20150966 ◽  
Author(s):  
Rachel R. Bennett ◽  
Calvin K. Lee ◽  
Jaime De Anda ◽  
Kenneth H. Nealson ◽  
Fitnat H. Yildiz ◽  
...  

Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa , Shewanella oneidensis and Vibrio cholerae , and provides a detailed dictionary for connecting observed spinning behaviour to bacteria–surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Sebastian Büsse ◽  
Thomas Hörnschemeyer ◽  
Kyle Hohu ◽  
David McMillan ◽  
Janice S. Edgerly

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Fatma Yalcinkaya ◽  
Baturalp Yalcinkaya ◽  
Oldrich Jirsak

A roller electrospinning system was used to produce nanofibres by using different solution systems. Although the process of electrospinning has been known for over half a century, knowledge about spinning behaviour is still lacking. In this work, we investigated the effects of salt for two solution systems on spinning performance, fibre diameter, and web structure. Polyurethane (PU) and polyethylene oxide (PEO) were used as polymer, and tetraethylammonium bromide and lithium chloride were used as salt. Both polymer and salt concentrations had a noteworthy influence on the spinning performance, morphology, and diameter of the nanofibres. Results indicated that adding salt increased the spinnability of PU. Salt created complex bonding with dimethylformamide solvent and PU polymer. Salt added to PEO solution decreased the spinning performance of fibres while creating thin nanofibres, as explained by the leaky dielectric model.


Author(s):  
Oleksandr Barannyk ◽  
Peter Oshkai

Spinning behaviour of diametral acoustic modes associated with self-sustained flow oscillations in a deep, axisymmetric cavity located in a long pipeline was investigated experimentally. High-amplitude pressure fluctuations resulted from the excitation of the diametral acoustic modes by the fully-turbulent flow in the pipeline. The unsteady pressure was measured at three equally spaced azimuthal locations at the bottom of the cavity. This arrangement allowed calculation of the azimuthal orientation of the acoustic modes, which were classified as stationary, partially spinning or spinning. Introduction of shallow chamfers to the upstream and the downstream edges of the cavity resulted in changes of azimuthal orientation and spinning behaviour of the acoustic modes. In addition, introduction of splitter plates in the cavity led to pronounced change in the spatial orientation and the spinning behaviour of the acoustic modes. The short splitter plates changed the behaviour of the dominant acoustic modes from partially spinning to stationary, while the long splitter plates enforced the stationary behaviour across all resonant acoustic modes.


Sign in / Sign up

Export Citation Format

Share Document