fast myhc
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Weilei Yao ◽  
Baoyin Guo ◽  
Zhengxi Bao ◽  
Lu Huang ◽  
Tongxin Wang ◽  
...  

Abstract Background The conversion of skeletal muscle fiber from fast twitch to slow-twitch is crucial for sustained contractile and stretchable events, energy homeostasis, and anti-fatigue ability. The purpose of our study was to explore the mechanism and effects of garcinol on the regulation of skeletal muscle fiber type transformation. Methods Forty 21-day-old male C57/BL6J mice (n = 10/diet) were fed a control diet or a control diet plus garcinol at 100 mg/kg (Low Gar), 300 mg/kg (Mid Gar), or 500 mg/kg (High Gar) for 12 weeks. The tibialis anterior (TA) and soleus muscles were collected for protein and immunoprecipitation analyses. Results Dietary garcinol significantly downregulated (P<0.05) fast MyHC expression and upregulated (P<0.05) slow MyHC expression in the TA and soleus muscles. Garcinol significantly increased (P<0.05) the activity of PGC-1α and markedly decreased (P<0.05) the acetylation of PGC-1α. In vitro and in vivo experiments showed that garcinol decreased (P<0.05) lactate dehydrogenase activity and increased (P<0.05) the activities of malate dehydrogenase and succinic dehydrogenase. In addition, the results of immunostaining C2C12 myotubes showed that garcinol treatment increased (P<0.05) the transformation of glycolytic muscle fiber to oxidative muscle fiber by 45.9%. Garcinol treatment and p300 interference reduced (P<0.05) the expression of fast MyHC but increased (P<0.05) the expression of slow MyHC in vitro. Moreover, the acetylation of PGC-1α was significantly decreased (P<0.05). Conclusion Garcinol promotes the transformation of skeletal muscle fibers from the fast-glycolytic type to the slow-oxidative type through the p300/PGC-1α signaling pathway in C2C12 myotubes.


2018 ◽  
Vol 121 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Shurun Zhang ◽  
Xiaoling Chen ◽  
Zhiqing Huang ◽  
Daiwen Chen ◽  
Bing Yu ◽  
...  

AbstractMuscle fibre types can transform from slow-twitch (slow myosin heavy chain (MyHC)) to fast-twitch (fast MyHC) or vice versa. Leucine plays a vital effect in the development of skeletal muscle. However, the role of leucine in porcine myofibre type transformation and its mechanism are still unclear. In this study, effects of leucine and microRNA-27a (miR-27a) on the transformation of porcine myofibre type were investigatedin vitro. We found that leucine increased slow MyHC protein level and decreased fast MyHC protein level, increased the levels of phospho-protein kinase B (Akt)/Akt and phospho-forkhead box 1 (FoxO1)/FoxO1 and decreased the FoxO1 protein level. However, blocking the Akt/FoxO1 signalling pathway by wortmannin attenuated the role of leucine in porcine myofibre type transformation. Over-expression of miR-27a decreased slow MyHC protein level and increased fast MyHC protein level, whereas inhibition of miR-27a had an opposite effect. We also found that expression of miR-27a was down-regulated following leucine treatment. Moreover, over-expression of miR-27a repressed transformation from fast MyHC to slow MyHC caused by leucine, suggesting that miR-27a is interdicted by leucine and then contributes to porcine muscle fibre type transformation. Our finding provided the first evidence that leucine promotes porcine myofibre type transformation from fast MyHC to slow MyHC via the Akt/FoxO1 signalling pathway and miR-27a.


2015 ◽  
pp. 111-118 ◽  
Author(s):  
T. SOUKUP ◽  
M. DIALLO

Recently, we have established that slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles of euthyroid (EU) Lewis rats posses the same proportions between their four myosin heavy chain (MyHC) mRNAs, protein isoforms and fiber types as determined by real time RT-PCR, SDS-PAGE and 2-D stereological fiber type analysis, respectively. In the present paper we investigated if these proportions are maintained in adult Lewis rats with hyperthyroid (HT) and hypothyroid (HY) status. Although HT and HY states change MyHC isoform expression, results from all three methods showed that proportion between MyHC mRNA-1, ‑2a, -2x/d, -2b, protein isoforms MyHC-1, -2a, -2x/d, -2b and to lesser extent also fiber types 1, 2A, 2X/D, 2B were preserved in both SOL and EDL muscles. Furthermore, in the SOL muscle mRNA expression of slow MyHC-1 remained up to three orders higher compared to fast MyHC transcripts, which explains the predominance of MyHC-1 isoform and fiber type 1 even in HT rats. Although HT status led in the SOL to increased expression of MyHC-2a mRNA, MyHC-2a isoform and 2A fibers, it preserved extremely low expression of MyHC-2x and -2b mRNA and protein isoforms, which explains the absence of pure 2X/D and 2B fibers. HY status, on the other hand, almost completely abolished expression of all three fast MyHC mRNAs, MyHC protein isoforms and fast fiber types in the SOL muscle. Our data present evidence that a correlation between mRNA, protein content and fiber type composition found in EU status is also preserved in HT and HY rats.


1997 ◽  
Vol 139 (5) ◽  
pp. 1219-1229 ◽  
Author(s):  
Leslie J.R. Acakpo-Satchivi ◽  
Winfried Edelmann ◽  
Carol Sartorius ◽  
Brian D. Lu ◽  
Philip A. Wahr ◽  
...  

The three adult fast myosin heavy chains (MyHCs) constitute the vast majority of the myosin in adult skeletal musculature, and are &gt;92% identical. We describe mice carrying null mutations in each of two predominant adult fast MyHC genes, IIb and IId/x. Both null strains exhibit growth and muscle defects, but the defects are different between the two strains and do not correlate with the abundance or distribution of each gene product. For example, despite the fact that MyHC-IIb accounts for &gt;70% of the myosin in skeletal muscle and shows the broadest distribution of expression, the phenotypes of IIb null mutants are generally milder than in the MyHC-IId/x null strain. In addition, in a muscle which expresses both IIb and IId/x MyHC in wild-type mice, the histological defects are completely different for null expression of the two genes. Most striking is that while both null strains exhibit physiological defects in isolated muscles, the defects are distinct. Muscle from IIb null mice has significantly reduced ability to generate force while IId null mouse muscle generates normal amounts of force, but has altered kinetic properties. Many of the phenotypes demonstrated by these mice are typical in human muscle disease and should provide insight into their etiology.


Development ◽  
1994 ◽  
Vol 120 (6) ◽  
pp. 1443-1452 ◽  
Author(s):  
N. Buffinger ◽  
F.E. Stockdale

Specification of the myogenic phenotype in somites was examined in the early chick embryo using organotypic explant cultures stained with monoclonal antibodies to myosin heavy chain. It was found that myogenic specification (formation of muscle fibers in explants of somites or segmental plates cultured alone) does not occur until Hamburger and Hamilton stage 11 (12-14 somites). At this stage, only the somites in the rostral half of the embryo are myogenically specified. By Hamburger and Hamilton stage 12 (15-17 somites), the three most caudal somites were not specified to be myogenic while most or all of the more rostral somites are specified to myogenesis. Somites from older embryos (stage 13–15, 18–26 somites) showed the same pattern of myogenic specification--all but the three most caudal somites were specified. We investigated the effects of the axial structures, the notochord and neural tube, on myogenic specification. Both the notochord and neural tube were able to induce myogenesis in unspecified somites. In contrast, the neural tube, but not the notochord, was able to induce myogenesis in explants of segmental plate, a structure which is not myogenic when cultured alone. When explants of specified somites were stained with antibodies to slow or fast MyHC, it was found that myofiber diversity (fast and fast slow fibers) was established very early in development (as early as Hamburger and Hamilton stage 11). We also found fiber diversity in explants of unspecified somites (the three most caudal somites from stage 11 to 15) when they were recombined with notochord or neural tube. We conclude that myogenic specification in the embryo results in diverse fiber types and is an inductive process which is mediated by factors produced by the neural tube and notochord.


Sign in / Sign up

Export Citation Format

Share Document