Garcinol Promotes the Formation of Slow-Twitch Muscle Fibers by Inhibiting p300-Dependent Acetylation of PGC-1α

Author(s):  
Weilei Yao ◽  
Baoyin Guo ◽  
Zhengxi Bao ◽  
Lu Huang ◽  
Tongxin Wang ◽  
...  

Abstract Background The conversion of skeletal muscle fiber from fast twitch to slow-twitch is crucial for sustained contractile and stretchable events, energy homeostasis, and anti-fatigue ability. The purpose of our study was to explore the mechanism and effects of garcinol on the regulation of skeletal muscle fiber type transformation. Methods Forty 21-day-old male C57/BL6J mice (n = 10/diet) were fed a control diet or a control diet plus garcinol at 100 mg/kg (Low Gar), 300 mg/kg (Mid Gar), or 500 mg/kg (High Gar) for 12 weeks. The tibialis anterior (TA) and soleus muscles were collected for protein and immunoprecipitation analyses. Results Dietary garcinol significantly downregulated (P<0.05) fast MyHC expression and upregulated (P<0.05) slow MyHC expression in the TA and soleus muscles. Garcinol significantly increased (P<0.05) the activity of PGC-1α and markedly decreased (P<0.05) the acetylation of PGC-1α. In vitro and in vivo experiments showed that garcinol decreased (P<0.05) lactate dehydrogenase activity and increased (P<0.05) the activities of malate dehydrogenase and succinic dehydrogenase. In addition, the results of immunostaining C2C12 myotubes showed that garcinol treatment increased (P<0.05) the transformation of glycolytic muscle fiber to oxidative muscle fiber by 45.9%. Garcinol treatment and p300 interference reduced (P<0.05) the expression of fast MyHC but increased (P<0.05) the expression of slow MyHC in vitro. Moreover, the acetylation of PGC-1α was significantly decreased (P<0.05). Conclusion Garcinol promotes the transformation of skeletal muscle fibers from the fast-glycolytic type to the slow-oxidative type through the p300/PGC-1α signaling pathway in C2C12 myotubes.

Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 186 ◽  
Author(s):  
Jiawei Zheng ◽  
Wujian Liu ◽  
Xiaohui Zhu ◽  
Li Ran ◽  
Hedong Lang ◽  
...  

It has been demonstrated that skeletal muscle adaptions, including muscle fibers transition, angiogenesis, and mitochondrial biogenesis are involved in the regular exercise-induced improvement of endurance capacity and metabolic status. Herein, we investigated the effects of pterostilbene (PST) supplementation on skeletal muscle adaptations to exercise training in rats. Six-week-old male Sprague Dawley rats were randomly divided into a sedentary control group (Sed), an exercise training group (Ex), and exercise training combined with 50 mg/kg PST (Ex + PST) treatment group. After 4 weeks of intervention, an exhaustive running test was performed, and muscle fiber type transformation, angiogenesis, and mitochondrial content in the soleus muscle were measured. Additionally, the effects of PST on muscle fiber transformation, paracrine regulation of angiogenesis, and mitochondrial function were tested in vitro using C2C12 myotubes. In vivo study showed that exercise training resulted in significant increases in time-to-exhaustion, the proportion of slow-twitch fibers, muscular angiogenesis, and mitochondrial biogenesis in rats, and these effects induced by exercise training could be augmented by PST supplementation. Moreover, the in vitro study showed that PST treatment remarkably promoted slow-twitch fibers formation, angiogenic factor expression, and mitochondrial function in C2C12 myotubes. Collectively, our results suggest that PST promotes skeletal muscle adaptations to exercise training thereby enhancing the endurance capacity.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Edward Javier Acero-Mondragon ◽  
Daniel Antonio Urdaneta-Paredes ◽  
Luis Carlos Chaustre-Nieto ◽  
John Jairo Gallego ◽  
Henry Leon-Ariza ◽  
...  

1995 ◽  
Vol 268 (3) ◽  
pp. E453-E457 ◽  
Author(s):  
M. S. Hickey ◽  
J. O. Carey ◽  
J. L. Azevedo ◽  
J. A. Houmard ◽  
W. J. Pories ◽  
...  

The purpose of this study was to determine if a relationship exists among skeletal muscle fiber composition, adiposity, and in vitro muscle glucose transport rate in humans. Rectus abdominus muscle was obtained during elective abdominal surgery from nonobese control (n = 12), obese (n = 12), and obese non-insulin-dependent diabetes mellitus (NIDDM) patients (n = 10). The obese NIDDM group had a significantly lower percentage of type I muscle fibers (32.2 +/- 1.9%) than the obese group (40.4 +/- 2.7%), and both obese groups were significantly lower than the control group (50.0 +/- 2.6%). Insulin-stimulated glucose transport, determined on 28 subjects, was significantly lower in both the obese (3.83 +/- 0.48 nmol.min-1.mg-1) and NIDDM (3.93 +/- 1.0 nmol.min-1.mg-1) groups vs. the control group (7.35 +/- 1.50 nmol.min-1.mg-1). Body mass index (BMI) was inversely correlated to percent type I fibers (r = -0.50, P < 0.01) and to the insulin-stimulated glucose transport rate (r = -0.53, P < 0.01). The percentage of type I muscle fibers was related to the insulin-stimulated glucose transport rate (r = 0.57, P < 0.01), although this relationship was not significant after adjusting for BMI. Although these data do not support an independent relationship between fiber type and insulin action in obesity, a reduced skeletal muscle type I fiber population may be one component of a multifactorial process involved in the development of insulin resistance.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 591-591
Author(s):  
Haoyu Li ◽  
Wenqiao Wang ◽  
Pan Zhuang ◽  
Jingjing Jiao ◽  
Yu Zhang

Abstract Objectives The aim of this study was to investigate the effects of DHA and EPA on glucose metabolism including glucose uptake and disposal in skeletal muscle and C2C12 myotubes. Methods Four-week-old db/db diabetic mice were fed with control diet enriched with DHA/EPA (purity &gt; 99%,  1% wt/wt) for 10 weeks. To further explore the underlying mechanism, C2C12 myotubes were induced insulin resistance by palmitate and treated with 25 and 50 μM DHA/EPA for 24 h after differentiation. Results The untargeted metabolome of skeletal muscle showed BCAAs and other metabolites associated with glycolysis and TCA cycle were altered by DHA/EPA treatment. Further detections revealed DHA/EPA treatment promoted the translocation of GLUT4 via increasing Rab8a and SNAP23 expression, and enhanced the activity of GS and PDH. In vitro, the glucose consumption was improved coupled with promoted Rab8a or SNAP23, and GS and PDH were also activated under DHA/EPA intervention increased glucose consumption via promoted Rab8a and SNAP23. The GS and PDH were also activated, which were in line with the results in vivo. Conclusions Long-term intake of DHA and EPA may have a protective effect on diabetes through promoted GLUT4 translocation, glycogen synthesis and aerobic glycolysis in skeletal muscle. Funding Sources This work was supported by the National Natural Science Foundation of China (grant number 81773419 and 81300309), Chinese Institute of Nutrition DSM Research Fund (grant number CNS-DSM-2017–035), China National Program for Support of Top-notch Young Professionals and China Postdoctoral Science Foundation (grant number 2020M681869).


1993 ◽  
Vol 264 (5) ◽  
pp. C1246-C1251 ◽  
Author(s):  
P. G. Arabadjis ◽  
P. C. Tullson ◽  
R. L. Terjung

To determine the capacity for purine nucleotide degradation among skeletal muscle fiber types, we established energy-depleted conditions in muscles of the rat hindlimb by inducing muscle contraction during ischemia. After 5, 10, 15, or 20 min of ischemic contractions, representative muscle sections were freeze-clamped and analyzed for purine nucleotides, nucleosides, and bases. Fast-twitch muscle sections accumulated about fourfold more IMP than the slow-twitch red soleus muscle. Inosine begins to accumulate at < 0.5 mumol/g IMP in slow-twitch muscle and at approximately 2 mumol/g IMP in fast-twitch muscle. This suggests that inosine is formed intracellularly by 5'-nucleotidase acting on IMP and that the activity and/or substrate affinity of the 5'-nucleotidase present in slow-twitch muscle may be higher than in fast-twitch muscle. At similar concentrations of precursor IMP, slow-twitch muscle has a greater capacity for purine nucleoside formation and should be more dependent on salvage and de novo synthesis of purine for the maintenance of muscle adenine nucleotides. Fast-twitch muscles are better able to retain IMP for subsequent reamination due to their lower capacity to degrade IMP to inosine.


2014 ◽  
Vol 112 (2) ◽  
pp. 424-429 ◽  
Author(s):  
Nicholas L. Reyes ◽  
Glen B. Banks ◽  
Mark Tsang ◽  
Daciana Margineantu ◽  
Haiwei Gu ◽  
...  

Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I “red” slow twitch and type II “white” fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 87
Author(s):  
Jingzheng Li ◽  
Jiaolong Li ◽  
Lin Zhang ◽  
Tong Xing ◽  
Yun Jiang ◽  
...  

Guanidinoacetic acid can improve pork quality. Previous studies have demonstrated that pork quality is closely linked to the muscle fiber type mediated by PPARGC1A. Therefore, this study aimed to evaluate the influence of dietary GAA supplementation on the skeletal muscle fiber type transformation. A total of 180 healthy Duroc × Landrace × Meishan cross castrated male pigs with a similar average weight (90 ± 1.5 kg) were randomly divided into three treatments with five replicates per treatment and 12 pigs per replicate, including a GAA-free basal diet and basal diet with 0.05% or 0.10% GAA for 15 days. Our results showed that 0.10% GAA supplementation increased the contents of Ca2+ in sarcoplasm (p < 0.05). Compared with the control group, both GAA supplementation groups upregulated the expression of Troponin I-ss (p < 0.05), and 0.10% GAA supplementation downregulated the expression of Troponin T3 (p < 0.05). GAA supplementation increased the expression of peroxisome proliferator activated receptor-γ coactivator-1alpha (PPARGC1A) (p < 0.05), and further upregulated the mitochondrial transcription factor A (TFAM), increased the level of membrane potential, and the activities of mitochondrial respiratory chain complex I, III (p < 0.05). The 0.10% GAA supplementation upregulated the protein expression of calcineurin catalytic subunit α (CnAα) and nuclear factor of activated T cells (NFATc1) (p < 0.05). Overall, dietary GAA supplementation promotes skeletal muscle fiber types transformation from fast-to-slow-twitch via increasing the PPARGC1A based mitochondrial function and the activation of CaN/NFAT pathway in finishing pigs.


Author(s):  
Joachim R. Sommer ◽  
Teresa High ◽  
Betty Scherer ◽  
Isaiah Taylor ◽  
Rashid Nassar

We have developed a model that allows the quick-freezing at known time intervals following electrical field stimulation of a single, intact frog skeletal muscle fiber isolated by sharp dissection. The preparation is used for studying high resolution morphology by freeze-substitution and freeze-fracture and for electron probe x-ray microanlysis of sudden calcium displacement from intracellular stores in freeze-dried cryosections, all in the same fiber. We now show the feasibility and instrumentation of new methodology for stimulating a single, intact skeletal muscle fiber at a point resulting in the propagation of an action potential, followed by quick-freezing with sub-millisecond temporal resolution after electrical stimulation, followed by multiple sampling of the frozen muscle fiber for freeze-substitution, freeze-fracture (not shown) and cryosectionmg. This model, at once serving as its own control and obviating consideration of variances between different fibers, frogs etc., is useful to investigate structural and topochemical alterations occurring in the wake of an action potential.


Sign in / Sign up

Export Citation Format

Share Document