quantum models
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 30)

H-INDEX

26
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Banks ◽  
Bingnan Zhang

We complete an old argument that causal diamonds in the crunching region of the Lorentzian continuation of a Coleman-Deluccia instanton for transitions out of de Sitter space have finite area, and provide quantum models consistent with the principle of detailed balance, which can mimic the instanton transition probabilities for the cases where this diamond is larger or smaller than the causal patch of de Sitter space. We review arguments that potentials which do not have a positive energy theorem when the lowest de Sitter minimum is shifted to zero, may not correspond to real models of quantum gravity.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012171
Author(s):  
E.D. Payares ◽  
J.C. Martinez-Santos

Abstract The paradigm of Quantum computing and artificial intelligence has been growing steadily in recent years and given the potential of this technology by recognizing the computer as a physical system that can take advantage of quantum mechanics for solving problems faster, more efficiently, and accurately. We suggest experimentation of this potential through an architecture of different quantum models computed in parallel. In this work, we present encouraging results of how it is possible to use Quantum Processing Units analogically to Graphics Processing Units to accelerate algorithms and improve the performance of machine learning models through three experiments. The first experiment was a reproduction of a parity function, allowing us to see how the convergence of a given Quantum model is influenced significantly by computing it in parallel. For the second and third experiments, we implemented an image classification problem by training quantum neural networks and using pre-trained models to compare their performances with the same experiments carried out with parallel quantum computations. We obtained very similar results in the accuracies, which were close to 100% and significantly improved the execution time, approximately 15 times faster in the best-case scenario. We also propose an alternative as a proof of concept to address emotion recognition problems using optimization algorithms and how execution times can be positively affected by parallel quantum computation. To do this, we use tools such as the cross-platform software library PennyLane and Amazon Web Services to access high-end simulators with Amazon Braket and IBM quantum experience.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Emmanuel M. Pothos ◽  
Jerome R. Busemeyer

Uncertainty is an intrinsic part of life; most events, affairs, and questions are uncertain. A key problem in behavioral sciences is how the mind copes with uncertain information. Quantum probability theory offers a set of principles for inference, which align well with intuition about psychological processes in certain cases: cases when it appears that inference is contextual, the mental state changes as a result of previous judgments, or there is interference between different possibilities. We motivate the use of quantum theory in cognition and its key characteristics. For each of these characteristics, we review relevant quantum cognitive models and empirical support. The scope of quantum cognitive models encompasses fallacies in decision-making (such as the conjunction fallacy or the disjunction effect), question order effects, conceptual combination, evidence accumulation, perception, over-/underdistribution effects in memory, and more. Quantum models often formalize psychological ideas previously expressed in heuristic terms, allow unified explanations of previously disparate findings, and have led to several surprising, novel predictions. We also cast a critical eye on quantum models and consider some of their shortcomings and issues regarding their further development. Expected final online publication date for the Annual Review of Psychology, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 03 (02) ◽  
pp. 1-1
Author(s):  
Angelo Morro ◽  

The objective of the paper is twofold: first, to review the classical diffusion models and show the approximations at the origin of the parabolic character of the classical equations; second, to demonstrate a connection between the quantum and classical models of diffusion. As diffusion is inherently related to the motion of constituents, the consistent models are framed within the dynamics of mixtures. The derivation of diffusion equations is then determined based on the related, pertinent approximations.


2021 ◽  
pp. 79-85
Author(s):  
Miroslav Svítek
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document