measure cone
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Elisabeth de Campos Porto ◽  
Cipriano Jose´ de Medeiros Junior ◽  
Paulo Roberto Dionysio Henriques Junior ◽  
Diego Foppa ◽  
Antoˆnio Carlos Pimentel Ferreira ◽  
...  

The paper describes the development of a soil investigation equipment, consisted of a piezocone installed at the tip of a torpedo-pile. The new equipment, named torpedo-piezocone, is able to measure cone resistance (qc), sleeve friction (fs), pore-pressure at the cone face (u1) and cone shoulder (u2) as well as cone temperature during free-fall and some time after final stop. Velocity, as well as displacement (depth) are obtained from accelerometer data, as in the case of the torpedo-pile. The various steps to develop the equipment are presented, from the requirements of the transducers until the calibration procedures in the laboratory. The first tests performed onshore are also presented. In general, very good results have been obtained.


2006 ◽  
Vol 23 (3-4) ◽  
pp. 441-446 ◽  
Author(s):  
HAO SUN ◽  
HANNAH E. SMITHSON ◽  
QASIM ZAIDI ◽  
BARRY B. LEE

We recently developed a new technique to measure cone inputs to visual neurons and used this technique to seek short-wavelength-sensitive (S) cone inputs to parasol, magnocellular (MC) and midget, parvocellular (PC) ganglion cells. Here, we compare our physiological measurements of S-cone weights to those predicted by a random wiring model that assumes cells' receptive fields receive input from mixed cone types. The random wiring model predicts the average weights of S-cone input to be similar to the total percentage of S-cones but with considerable scatter, and the S-cone input polarity to be consistent with that of PC cells' surround and of MC cells' center. This is not consistent with our physiological measurements. We suggest that the ganglion cells' receptive fields may have a mechanism to avoid S-cone inputs, as is the case in the H1 horizontal cells. Previous reports of S-cone inputs, in particular substantial input to MC cells, are likely to reflect variation in prereceptoral filtering and/or the failure to correct for variation in macular pigment.


2006 ◽  
Vol 95 (2) ◽  
pp. 837-849 ◽  
Author(s):  
Hao Sun ◽  
Hannah E. Smithson ◽  
Qasim Zaidi ◽  
Barry B. Lee

The specificity of cone inputs to ganglion cells has implications for the development of retinal connections and the nature of information transmitted to higher areas of the brain. We introduce a rapid and precise method for measuring signs and magnitudes of cone inputs to visual neurons. Colors of stimuli are modulated around circumferences of three color planes in clockwise and counterclockwise directions. For each neuron, the projection of the preferred vector in each plane was estimated by averaging the response phases to clockwise and counterclockwise modulation. The signs and weights of cone inputs were derived directly from the preferred vectors. The efficiency of the method enables us to measure cone inputs at different temporal frequencies and short-wavelength-sensitive (S) cone adaptation levels. The results show that S-cone inputs to the parvocellular and magnocellular ganglion cells are negligible, which implies underlying connectional specificity in the retinal circuitry.


Author(s):  
D. R. Guildenbecher ◽  
R. R. Rachedi ◽  
P. E. Sojka

An experimental investigation was conducted to study the effects of increased ambient pressure (up to 6.89 MPa) and increased nozzle pressure drop (up to 2.8 MPa) on the cone angles for sprays produced by pressure-swirl atomizers having varying amounts of initial swirl. This study extends the classical results of DeCorso and Kemeny [1]. Shadow photography was used to measure cone angles at x/D0=10, 20, 40, and 60. Our lower pressure results for atomizer swirl numbers of 0.50 and 0.25 are consistent with those of DeCorso and Kemeny [1], who observed a decrease in cone angle with an increase in a pressure drop-ambient density product until a minimum cone angle was reached at ΔPρair1.6~200. Results for atomizers having higher swirl numbers do not match the DeCorso and Kemeny [1] results as well, suggesting that their correlation be used with caution. Another key finding is that an increase in ΔPρair1.6 to a value of 1000 leads to continued decreases in cone angle, but that a subsequent increase to 4000 has little effect on cone angle. Finally, there was little influence of atomizer pressure drop on cone angle, in contrast to findings of previous workers. These effects are hypothesized to be due to gas entrainment.


1992 ◽  
Vol 41 (1) ◽  
pp. 163-185 ◽  
Author(s):  
Paul Busch ◽  
Ernst Ruch
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document