vorticity analysis
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Irina I. Rypina ◽  
Timothy R. Getscher ◽  
Lawrence J. Pratt ◽  
Baptiste Mourre

AbstractThis paper presents analyses of drifters with drogues at different depths – 1, 10, 30, 50 m – that were deployed in the Mediterranean Sea to investigate frontal subduction and upwelling. Drifter trajectories were used to estimate divergence, vorticity, vertical velocity, and finite-size Lyapunov exponents (FTLEs), and to investigate the balance of terms in the vorticity equation. The divergence and vorticity are O(f) and change sign along trajectories. Vertical velocity is O(1 mm/s), increases with depth, indicates predominant upwelling with isolated downwelling events, and sometimes changes sign between 1 and 50 m. Vortex stretching is one of, but not the only, significant term in the vorticity balance. 2D FTLEs are 2 × 10−51/s after 1 day, twice larger than in a 400-m-resolution numerical model. 3D FTLEs are 50% larger than 2D FTLEs and are dominated by the vertical shear of horizontal velocity. Bootstrapping suggests uncertainty levels of ~10% of the time-mean absolute values for divergence and vorticity. Analysis of simulated drifters in a model suggests that drifter-based estimates of divergence and vorticity are close to the Eulerian model estimates, except when drifters get aligned into long filaments. Drifter-based vertical velocity is close to the Eulerian model estimates at 1 m but differs at deeper depths. The errors in the vertical velocity are largely due to the lateral separation between drifters at different depths, and partially due to only measuring at 4 depths. Overall, this paper demonstrates how drifters, heretofore restricted to 2D near-surface observations, can be used to learn about 3D flow properties throughout the upper layer of the water column.


2019 ◽  
Author(s):  
Garnet J. Williams ◽  
◽  
Erkan Toraman

2018 ◽  
Vol 111 (2) ◽  
pp. 171-179
Author(s):  
Pitsanupong Kanjanapayont ◽  
Peekamon Ponmanee ◽  
Bernhard Grasemann ◽  
Urs Klötzli ◽  
Prayath Nantasin

AbstractThe NW–trending Three Pagodas shear zone exposes a high–grade metamorphic complex named Thabsila gneiss in the Kanchanaburi region, western Thailand. The quartz mylonites within this strike–slip zone were selected for strain analysis. 2–dimensional strain analysis indicates that the averaged strain ratio (Rs) for the lower greenschist facies increment of XZ– plane is Rs = 1.60–1.97 by using the Fry’s method. Kinematic vorticity analysis of the quartz mylonites in the shear zone showed that the mean kinematic vorticity number of this increment is Wk = 0.75–0.99 with an average at 0.90 ±0.07. The results implied that the quartz mylonites within the Three Pagodas shear zone have a dominant simple shear component of about 72% with a small pure shear component. A sinistral shear sense is indicated by kinematic indicators from macro– to micro–scale. We conclude that the Three Pagodas shear zone deformed in the process of sinstral shear–dominated transpression, which is similar to the Mae Ping shear zone in the north.


Sign in / Sign up

Export Citation Format

Share Document