structure liquid
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 18 ◽  
Author(s):  
Anju K Sasidharan ◽  
Jomon Mathew ◽  
Ammathnadu S. Achalkumar ◽  
Manoj Mathews

Aim: In this paper, we report on the synthesis and liquid crystalline properties of some low molecular weight bis-chalcone compounds derived from acetone, cyclopentanone and cyclohexanone mesogenic cores. Background: Structurally bis-chalcones belong to a broader family of chalcone compounds. Chalcone is a compound that consists of two aromatic rings linked by an unsaturated objective. Liquid crystalline chalcones are prepared by aliphatic chain substituents on two aromatic rings. Chalcones are well studied for their mesomorphic properties. Compared to a large number of chalcone based LCs reported, only a few articles have been published on the mesomorphic properties of bis-chalcone compounds. The target compounds of the present study varied not only in their central core but also in number and position of terminal aliphatic chain substitutiona key structural unit in deciding the liquid crystalline properties of a compound. Method: All target compounds were synthesized in good yield by base catalyzed Claisen-Schmidt condensation reaction. Molecular structures were confirmed by FT-IR, 1H NMR, 13C NMR, and mass spectroscopic methods. Liquid crystalline property of these compounds was evaluated using polarizing optical microscopy and differential scanning calorimetry. Results: Although none of the acetone based compounds exhibited mesomorphism, cyclopentanone and cyclohexanone based compounds with octyloxy chain at para position on either side of the dibenzylidine ring stabilized liquid crystalline smectic (SmA and SmC) and nematic (N) phases. The observed structure-liquid crystalline property relationship was explained by structural analysis of molecules using DFT calculations. Considering the inherent photoluminescence nature of the chalcone moiety, a preliminary study was carried out on a selected compound to reveal its fluorescence property. Conclusion: Our study brings about an important structure-liquid crystalline property relationship in a relatively unexplored class of bis-chalcone liquid crystals.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 602
Author(s):  
Yao Gao ◽  
Tengfei Huang ◽  
Jiangang Lu

The template effects on stability of twist structure liquid crystals (LCs) were investigated. By refilling a cholesteric LC (CLC) of different pitch into a blue phase LC (BPLC) template or a sphere phase LC (SPLC) template, a multi-phase and multi-pitch twist structure LC, which includes the refilling CLC and intrinsic template BPLC or SPLC, can be fabricated. By refilling a CLC of different chiral pitch into a CLC template, a multi-pitch CLC that includes the refilling CLC and intrinsic CLC, can be fabricated. Twist structure LC devices with multi-phase and multi-pitch show great potential for applications in optical communication, displays, and LC lasing.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Joanna Korec ◽  
Karol A. Stasiewicz ◽  
Olga Strzeżysz ◽  
Przemysław Kula ◽  
Leszek R. Jaroszewicz

The paper presents the results of design, manufacturing, and characterization of a hybrid broad band in-line fiber-optic device. It uses nematic liquid crystal as cladding with electro-steering properties in a biconical optical fiber taper structure. Liquid crystal mixtures denoted as 6CHBT and E7 are designed for electric as well as temperature control of electromagnetic wave propagation in a broad wavelength range. The applied taper with 10±0.5 μm diameters has losses lower than 0.5 dB in whole investigated spectrum range. Three kinds of initial liquid crystal molecules’ orientations (parallel, orthogonal, and twist) in relation to the light beam propagating in a taper were applied. The performance of a tuned cladding was studied at an electric field of the range of 0–190 V and the temperature range from 20°C up to 42°C and 59°C for 6CHBT and E7, respectively. The induced reorientation of liquid crystal molecules was measured at a broad wavelength range (550-1550 nm).


Sign in / Sign up

Export Citation Format

Share Document