The Effect of Topographic Irregularities on Seismic Response of the Concrete Rectangular Liquid Storage Tanks Incorporating Soil–Structure–Liquid Interaction

Author(s):  
M. H. Asgari ◽  
M. I. Khodakarami ◽  
R. Vahdani
Author(s):  
Mostafa Farajian ◽  
Mohammad Iman Khodakarami ◽  
Denise-Penelope N. Kontoni

Soil-structure interaction (SSI) could affect the seismic response of structures. Since liquid storage tanks are vital structures and must continue their operation under severe earthquakes, their seismic behavior should be studied. Accordingly, the seismic response of liquid storage tanks founded on half space soil is scrutinized under different earthquake ground motions. To better comparison, the six considered ground motions are classified based on their pulse like characteristics, into two groups, named far and near fault ground motions. To model the liquid storage tanks, the simplified mass-spring model is used and the liquid is modeled as two lumped masses known as sloshing and impulsive, and the interaction of fluid and structure is considered using two coupled springs and dashpots. The SSI effect, also, is considered using a coupled spring and dashpot. Besides, four types of soils are used to consider wide variety of soil properties. To this end, after deriving the equations of motion, the MATLAB programming is employed to obtain the time history responses. Results show that although the SSI effect leads to decrease the impulsive displacement, overturning moment and normalized base shear, the sloshing (or convective) displacement is not affected by such effects due to its long period.


2004 ◽  
Vol 11 (1) ◽  
pp. 33-45 ◽  
Author(s):  
M.B. Jadhav ◽  
R.S. Jangid

Seismic response of liquid storage tanks isolated by elastomeric bearings and sliding system is investigated under real earthquake ground motions. The continuous liquid mass of the tank is modeled as lumped masses known as sloshing mass, impulsive mass and rigid mass. The coupled differential equations of motion of the system are derived and solved in the incremental form using Newmark's step-by-step method with iterations. The seismic response of isolated tank is studied to investigate the comparative effectiveness of various isolation systems. A parametric study is also carried out to study the effect of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: (i) aspect ratio of the tank and (ii) the time period of the isolation systems. It was observed that both elastomeric and sliding systems are found to be effective in reducing the earthquake forces of the liquid storage tanks. However, the elastomeric bearing with lead core is found to perform better in comparison to other systems. Further, an approximate model is proposed for evaluation of seismic response of base-isolated liquid storage tanks. A comparison of the seismic response evaluated by the proposed approximate method and an exact approach is made under different isolation systems and system parameters. It was observed that the proposed approximate analysis provides satisfactory response estimates of the base-isolated liquid storage tanks under earthquake excitation.


Author(s):  
Maria Vathi ◽  
Spyros A. Karamanos

Unanchored liquid storage tanks under strong earthquake loading tend to uplift. In the present study, the effects of base uplifting on the seismic response of unanchored tanks are presented with emphasis on elephant’s foot buckling, base plate strength and shell-to-base connection capacity. Towards this purpose, base uplifting mechanics is analyzed through a detailed simulation of the tank using non-linear finite elements, and a static pushover analysis is conducted that considers the hydrodynamic pressure distribution due to seismic loading on the tank wall and the base plate. The uplifting provisions from EN 1998-4 and API 650 Appendix E standards are briefly described. Numerical results for a typical 27.8-meter-diameter steel tank are compared with the above design provisions.


Sign in / Sign up

Export Citation Format

Share Document