thickness independent
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 21)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Vol 104 (3) ◽  
Author(s):  
David A. Kealhofer ◽  
Manik Goyal ◽  
Tyler N. Pardue ◽  
Susanne Stemmer

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nana Wang ◽  
Xiao Zhang ◽  
Zhengyu Ju ◽  
Xingwen Yu ◽  
Yunxiao Wang ◽  
...  

AbstractIncreasing the energy density of lithium-sulfur batteries necessitates the maximization of their areal capacity, calling for thick electrodes with high sulfur loading and content. However, traditional thick electrodes often lead to sluggish ion transfer kinetics as well as decreased electronic conductivity and mechanical stability, leading to their thickness-dependent electrochemical performance. Here, free-standing and low-tortuosity N, O co-doped wood-like carbon frameworks decorated with carbon nanotubes forest (WLC-CNTs) are synthesized and used as host for enabling scalable high-performance Li-sulfur batteries. EIS-symmetric cell examinations demonstrate that the ionic resistance and charge-transfer resistance per unit electro-active surface area of S@WLC-CNTs do not change with the variation of thickness, allowing the thickness-independent electrochemical performance of Li-S batteries. With a thickness of up to 1200 µm and sulfur loading of 52.4 mg cm−2, the electrode displays a capacity of 692 mAh g−1 after 100 cycles at 0.1 C with a low E/S ratio of 6. Moreover, the WLC-CNTs framework can also be used as a host for lithium to suppress dendrite growth. With these specific lithiophilic and sulfiphilic features, Li-S full cells were assembled and exhibited long cycling stability.


Author(s):  
Ashutosh Giri ◽  
Ramez Cheaito ◽  
John T. Gaskins ◽  
Takanori Mimura ◽  
Harlan J. Brown-Shaklee ◽  
...  

Author(s):  
Tianqi Wu ◽  
Zedong Zhao ◽  
Jiajia Zhang ◽  
Chang Zhang ◽  
Yixuan Guo ◽  
...  

2020 ◽  
Vol 14 (5) ◽  
Author(s):  
Ilia M. Fradkin ◽  
Sergey A. Dyakov ◽  
Nikolay A. Gippius

ACS Nano ◽  
2020 ◽  
Vol 14 (10) ◽  
pp. 12719-12731
Author(s):  
Zongbin Hao ◽  
Xingchen He ◽  
Hongdou Li ◽  
Denis Trefilov ◽  
Yangyang Song ◽  
...  

2020 ◽  
Vol 12 (15) ◽  
pp. 17706-17712 ◽  
Author(s):  
Yuehua Wei ◽  
Renyan Zhang ◽  
Yi Zhang ◽  
Xiaoming Zheng ◽  
Weiwei Cai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document