curve crossing
Recently Published Documents


TOTAL DOCUMENTS

246
(FIVE YEARS 4)

H-INDEX

41
(FIVE YEARS 1)

2020 ◽  
Vol 117 (35) ◽  
pp. 21065-21069
Author(s):  
Shanyu Han ◽  
Carolyn E. Gunthardt ◽  
Richard Dawes ◽  
Daiqian Xie ◽  
Simon W. North ◽  
...  

The origin of the even–odd rotational state population alternation in the16O2(a1Δg) fragments resulting from the ultraviolet (UV) photodissociation of16O3, a phenomenon first observed over 30 years ago, has been elucidated using full quantum theory. The calculated16O2(a1Δg) rotational state distribution following the 266-nm photolysis of 60 K ozone shows a strong even–odd propensity, in excellent agreement with the new experimental rotational state distribution measured under the same conditions. Theory indicates that the even rotational states are significantly more populated than the adjacent odd rotational states because of a preference for the formation of the A′ Λ-doublet, which can only occupy even rotational states due to the exchange symmetry of the two bosonic16O nuclei, and thus not as a result of parity-selective curve crossing as previously proposed. For nonrotating ozone, its dissociation on the excited B1A′ state dictates that only A′ Λ-doublets are populated, due to symmetry conservation. This selection rule is relaxed for rotating parent molecules, but a preference still persists for A′ Λ-doublets. The A′′/A′ ratio increases with increasing ozone rotational quantum number, and thus with increasing temperature, explaining the previously observed temperature dependence of the even–odd population alternation. In light of these results, it is concluded that the previously proposed parity-selective curve-crossing mechanism cannot be a source of heavy isotopic enrichment in the atmosphere.


2020 ◽  
Vol 124 (16) ◽  
Author(s):  
William E. Perreault ◽  
Haowen Zhou ◽  
Nandini Mukherjee ◽  
Richard N. Zare

2019 ◽  
Vol 18 (01) ◽  
pp. 1950007 ◽  
Author(s):  
Paúl Pozo-Guerrón ◽  
Gerardo Armijos-Capa ◽  
Luis Rincón ◽  
José R. Mora ◽  
F. Javier Torres ◽  
...  

In the present work, the activation of methyl halides bonds under experience of an external electric field (EEF) is explained from the Valence Bond theory perspective. The dissociation mechanism of C–X bonds (X [Formula: see text] Cl, Br, I) influenced by a homogeneous and a heterogeneous field placed parallel to the bond axis is presented. For all examples, an increase in the electric field strength have similar consequences: (i) the decrease of the energy depth along the dissociation path, (ii) an increase of the equilibrium interatomic distance (at high EEFs), and (iii) the transition from a homolytic to a heterolytic dissociation after some field magnitude. These general behaviors are explained through the curve crossing between the ionic and the covalent structure at some field strength.


2018 ◽  
Vol 232 (3) ◽  
pp. 311-323 ◽  
Author(s):  
Elena I. Dashevskaya ◽  
Evgeny E. Nikitin ◽  
Hans-Jürgen Troe

AbstractThis work suggests a connection between Landau-Zener transition probabilities between two crossing potentials in the classically accessible WKB regime and Landau-Lifshitz transition probabilities in the classically inaccessible WKB regime. It is based on the uniform Airy (UAi) approximation which represents a generalization of quantum transition probabilities for linear crossing potentials with constant coupling. The performance of the UAi approximation is tested by comparison with distorted-wave probabilities for an exponential potential model and illustrated for potentials that determine the intersection of twoab initiovibronic potential surfaces of the NO-Ar system.


2018 ◽  
Vol 212 ◽  
pp. 191-215 ◽  
Author(s):  
K. Eryn Spinlove ◽  
Gareth W. Richings ◽  
Michael A. Robb ◽  
Graham A. Worth

Fully quantum direct dynamics simulations generate the potential surface manifold for the photo-excited dynamics of small organic molecules.


2016 ◽  
Author(s):  
Vladimir I. Minkin
Keyword(s):  

2016 ◽  
Vol 120 (19) ◽  
pp. 3225-3232 ◽  
Author(s):  
Weiwei Xie ◽  
Meng Xu ◽  
Shuming Bai ◽  
Qiang Shi

Sign in / Sign up

Export Citation Format

Share Document