methyl halides
Recently Published Documents


TOTAL DOCUMENTS

300
(FIVE YEARS 9)

H-INDEX

42
(FIVE YEARS 1)

2022 ◽  
Vol 518 ◽  
pp. 112108
Author(s):  
Youcai Zhu ◽  
Xing Guo ◽  
Xinxin Ding ◽  
Li Sun ◽  
Mingguo Zhang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 01 ◽  
Author(s):  
Saad Moulay

: C-Methylation of organic substrates was accomplished with a number of methylating agents other than methane, methanol, and methyl metals. They include methyl halides (MeX, X = I, Br, Cl, F), methyl-containing halogenated reagents, methyl peroxides, dimethyl carbonate (DMC), dimethylsulfoxide (DMSO), N,N-dimethyl formamide (DMF), diazomethane, formate salts, trioxane, CO/H2, CO2/H2, and dimethyl ether (DME). Under particular conditions, some methyl-containing molecules such as polymethylbenzenes, methylhydrazine, tris(diethylamino)sulfonium difluorotrimethylsilicate, methyl tosylate, long-chain alkyl alcohols, and acetic acid unexpectedly C-methylated a variety of organic substrates. A few cases of C-methylation only were reported to occur in the absence of catalysts. Otherwise, transition metal complexes as catalysts in conjunction with specific ligands and bases were ubiquitously present in most C-methylation reactions. Of the reactions, Suzuki-Miyaura-type cross-coupling remained of paramount importance in making 11CH3-bearing positron emission tomography tracers (PETs), one of the best applications of such methylation. Methylation proceeded at C(aromatic)-X, C(sp3)-X C(sp2)-X, and C(sp)-X of substrates (X = H, halogen). Ortho-methylation was regioselectively observed with aromatic substrates when they bear moieties such as pyridyl, pyrimidyl, amide, and imine functionalities, which were accordingly coined ‘ortho-directing groups’.


2021 ◽  
Vol 9 (6) ◽  
pp. 1332
Author(s):  
Irene Artuso ◽  
Paolo Turrini ◽  
Mattia Pirolo ◽  
Gabriele Andrea Lugli ◽  
Marco Ventura ◽  
...  

Bacteria belonging to the genus Aminobacter are metabolically versatile organisms thriving in both natural and anthropized terrestrial environments. To date, the taxonomy of this genus is poorly defined due to the unavailability of the genomic sequence of A. anthyllidis LMG 26462T and the presence of unclassified Aminobacter strains. Here, we determined the genome sequence of A. anthyllidis LMG 26462T and performed phylogenomic, average nucleotide identity and digital DNA-DNA hybridization analyses of 17 members of genus Aminobacter. Our results indicate that 16S rRNA-based phylogeny does not provide sufficient species-level discrimination, since most of the unclassified Aminobacter strains belong to valid Aminobacter species or are putative new species. Since some members of the genus Aminobacter can utilize certain C1 compounds, such as methylamines and methyl halides, a comparative genomic analysis was performed to characterize the genetic basis of some degradative/assimilative pathways in the whole genus. Our findings suggest that all Aminobacter species are heterotrophic methylotrophs able to generate the methylene tetrahydrofolate intermediate through multiple oxidative pathways of C1 compounds and convey it in the serine cycle. Moreover, all Aminobacter species carry genes implicated in the degradation of phosphonates via the C-P lyase pathway, whereas only A. anthyllidis LMG 26462T contains a symbiosis island implicated in nodulation and nitrogen fixation.


2021 ◽  
Vol 23 (6) ◽  
pp. 3748-3760
Author(s):  
E. T. Jensen
Keyword(s):  

Photodissociation of CH3X on C6F6 thin films on copper finds that dissociation by photoelectrons is entirely quenched. Different behaviour is observed for these molecules on C6H6 films, including a CT-complex pathway for CH3I on thick C6H6 films.


2019 ◽  
Vol 19 (11) ◽  
pp. 7667-7690 ◽  
Author(s):  
Moshe Shechner ◽  
Alex Guenther ◽  
Robert Rhew ◽  
Asher Wishkerman ◽  
Qian Li ◽  
...  

Abstract. Volatile halogenated organic compounds (VHOCs), such as methyl halides (CH3X; X is Br, Cl and I) and very short-lived halogenated substances (VSLSs; bromoform – CHBr3, dibromomethane – CH2Br2, bromodichloromethane – CHBrCl2, trichloroethylene – C2HCl3, chloroform – CHCl3 – and dibromochloromethane – CHBr2Cl) are well known for their significant influence on ozone concentrations and oxidation capacity of the troposphere and stratosphere and for their key role in aerosol formation. Insufficient characterization of the sources and the emission rate of VHOCs limits our ability to understand and assess their impact in both the troposphere and stratosphere. Over the last two decades, several natural terrestrial sources for VHOCs, including soil and vegetation, have been identified, but our knowledge of emission rates from these sources and their responses to changes in ambient conditions remains limited. Here we report measurements of the mixing ratios and fluxes of several chlorinated and brominated VHOCs from different landscapes and natural and agricultural vegetated sites at the Dead Sea during different seasons. Fluxes were generally positive (emission into the atmosphere), corresponding to elevated mixing ratios, but were highly variable. Fluxes (and mixing ratios) for the investigated VHOCs ranged as follows: CHBr3 from −79 to 187 nmol m−2 d−1 (1.9 to 22.6 pptv), CH2Br2 from −55 to 71 nmol m−2 d−1 (0.7 to 19 pptv), CHBr2Cl from −408 to 768 nmol m−2 d−1 (0.4 to 11 pptv), CHBrCl2 from −29 to 45 nmol m−2 d−1 (0.5 to 9.6 pptv), CHCl3 from −577 to 883 nmol m−2 d−1 (15 to 57 pptv), C2HCl3 from −74 to 884 nmol m−2 d−1 (0.4 to 11 pptv), methyl chloride (CH3Cl) from -5300 to 10,800 nmol m−2 d−1 (530 to 730 pptv), methyl bromide (CH3Br) from −111 to 118 nmol m−2 d−1 (7.5 to 14 pptv) and methyl iodide (CH3I) from −25 to 17 nmol m−2 d−1 (0.4 to 2.8 pptv). Taking into account statistical uncertainties, the coastal sites (particularly those where soil is mixed with salt deposits) were identified as sources of all VHOCs, but this was not statistically significant for CHCl3. Further away from the coastal area, the bare soil sites were sources for CHBrCl2, CHBr2Cl, CHCl3, and probably also for CH2Br2 and CH3I, and the agricultural sites were sources for CHBr3, CHBr2Cl and CHBrCl2. In contrast to previous reports, we also observed emissions of brominated trihalomethanes, with net molar fluxes ordered as follows: CHBr2Cl > CHCl3 > CHBr3 > CHBrCl2 and lowest positive flux incidence for CHCl3 among all trihalomethanes; this finding can be explained by the soil's enrichment with Br. Correlation analysis, in agreement with recent studies, indicated common controls for the emission of CHBr2Cl and CHBrCl2 and likely also for CHBr3. There were no indications for correlation of the brominated trihalomethanes with CHCl3. Also in line with previous reports, we observed elevated emissions of CHCl3 and C2HCl3 from mixtures of soil and different salt-deposited structures; the flux correlations between these compounds and methyl halides (particularly CH3I) suggested that at least CH3I is also emitted via similar mechanisms or is subjected to similar controls. Overall, our results indicate elevated emission of VHOCs from bare soil under semiarid conditions. Along with other recent studies, our findings point to the strong emission potential of a suite of VHOCs from saline soils and salt lakes and call for additional studies of emission rates and mechanisms of VHOCs from saline soils and salt lakes.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950007 ◽  
Author(s):  
Paúl Pozo-Guerrón ◽  
Gerardo Armijos-Capa ◽  
Luis Rincón ◽  
José R. Mora ◽  
F. Javier Torres ◽  
...  

In the present work, the activation of methyl halides bonds under experience of an external electric field (EEF) is explained from the Valence Bond theory perspective. The dissociation mechanism of C–X bonds (X [Formula: see text] Cl, Br, I) influenced by a homogeneous and a heterogeneous field placed parallel to the bond axis is presented. For all examples, an increase in the electric field strength have similar consequences: (i) the decrease of the energy depth along the dissociation path, (ii) an increase of the equilibrium interatomic distance (at high EEFs), and (iii) the transition from a homolytic to a heterolytic dissociation after some field magnitude. These general behaviors are explained through the curve crossing between the ionic and the covalent structure at some field strength.


2018 ◽  
Author(s):  
Moshe Shechner ◽  
Alex Guenther ◽  
Robert Rhew ◽  
Asher Wishkerman ◽  
Qian Li ◽  
...  

Abstract. Volatile halogenated organic compounds (VHOCs), such as methyl halides (CH3X; X = Br, Cl and I) and very short-lived halogenated substances (VSLS; CHBr3, CH2Br2, CHBrCl2, C2HCl3, CHCl3 and CHBr2Cl) are well known for their significant influence on ozone concentrations and oxidation capacity of the troposphere and stratosphere, and for their key role in aerosol formation. Insufficient characterization of the sources and emission rate of VHOCs limits our present ability to understand and assess their impact in both the troposphere and the stratosphere. Over the last two decades several natural terrestrial sources for VHOCs, including soil and vegetation, have been identified, but our knowledge about emission rates from these sources and their responses to changes in ambient conditions remains limited. Here we report measurements of the mixing ratios and the fluxes of several chlorinated and brominated VHOCs from different landforms and vegetated sites at the Dead Sea during different seasons. Fluxes were highly variable but were generally positive (emissive), corresponding with elevated mixing ratios for all of the VHOCs investigated in the four investigated site types – bare soil, coastal, cultivated and natural vegetated sites – except for fluxes of CH3I and C2HCl3 over the vegetated sites. In contrast to previous reports, we also observed emissions of brominated trihalomethanes, with net molar fluxes ordered as follows: CHBr2Cl > CHBr3 > CHBrCl2 > CHCl3. This finding can be explained by the enrichment of soil with Br. Correlation analysis, in agreement with recent studies, indicated common controls for the formation and emission of all the above trihalomethanes but also for CH2Br2. Also in line with previous reports, we observed elevated emissions of CHCl3 and C2HCl3 from mixtures of soil and different salt-deposited structures; the high correlations of flux with methyl halides, and particularly with CH3I, suggested that at least CH3I is also emitted via similar mechanisms or is subjected to similar controls. Overall, our results indicate elevate emission of VHOCs from bare soil under semi-arid conditions. Along with other recent studies, our findings point to the strong emission potential of a suite of VHOCs from saline soils and salt lakes, and call for additional studies of emission rates and mechanisms of VHOCs from saline soils and salt lakes.


Sign in / Sign up

Export Citation Format

Share Document