rotational state
Recently Published Documents


TOTAL DOCUMENTS

305
(FIVE YEARS 24)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Vol 923 (2) ◽  
pp. 261
Author(s):  
Anita Petzler ◽  
J. R. Dawson ◽  
Mark Wardle

Abstract The hyperfine transitions of the ground-rotational state of the hydroxyl radical (OH) have emerged as a versatile tracer of the diffuse molecular interstellar medium. We present a novel automated Gaussian decomposition algorithm designed specifically for the analysis of the paired on-source and off-source optical depth and emission spectra of these OH transitions. In contrast to existing automated Gaussian decomposition algorithms, Amoeba (Automated Molecular Excitation Bayesian line-fitting Algorithm) employs a Bayesian approach to model selection, fitting all four optical-depth and four emission spectra simultaneously. Amoeba assumes that a given spectral feature can be described by a single centroid velocity and full width at half maximum, with peak values in the individual optical-depth and emission spectra then described uniquely by the column density in each of the four levels of the ground-rotational state, thus naturally including the real physical constraints on these parameters. Additionally, the Bayesian approach includes informed priors on individual parameters that the user can modify to suit different data sets. Here we describe Amoeba and establish its validity and reliability in identifying and fitting synthetic spectra with known (but hidden) parameters, finding that the code performs very well in a series of practical tests. Amoeba’s core algorithm could be adapted to the analysis of other species with multiple transitions interconnecting shared levels (e.g., the 700 MHz lines of the first excited rotational state of CH). Users are encouraged to adapt and modify Amoeba to suit their own use cases.


2021 ◽  
Vol 2 (6) ◽  
pp. 231
Author(s):  
Matija Ćuk ◽  
Seth A. Jacobson ◽  
Kevin J. Walsh

Abstract Most close-in planetary satellites are in synchronous rotation, which is usually the stable end-point of tidal despinning. Saturn’s moon Hyperion is a notable exception by having a chaotic rotation. Hyperion’s dynamical state is a consequence of its high eccentricity and its highly prolate shape. As many binary asteroids also have elongated secondaries, chaotic rotation is expected for moons in eccentric binaries, and a minority of asteroidal secondaries may be in that state. The question of secondary rotation is also important for the action of the binary Yarkovsky–O’Keefe–Radzievskii–Paddack (BYORP) effect, which can quickly evolve orbits of synchronous (but not nonsynchronous) secondaries. Here we report results of a large set of short numerical simulations which indicate that, apart from synchronous and classic chaotic rotation, close-in irregularly shaped asteroidal secondaries can occupy an additional, intermediate rotational state. In this “barrel instability” the secondary slowly rolls along its long axis, while the longest axis is staying largely aligned with the primary–secondary line. This behavior may be more difficult to detect through lightcurves than a fully chaotic rotation, but would likewise shut down BYORP. We show that the binary’s eccentricity, separation measured in secondary’s radii and the secondary’s shape are all important for determining whether the system settles in synchronous rotation, chaotic tumbling, or barrel instability. We compare our results for synthetic asteroids with known binary pairs to determine which of these behaviors may be present in the near-Earth asteroid binary population.


2021 ◽  
Author(s):  
Thamiya Vasanthakumar ◽  
Kristine A Keon ◽  
Stephanie A Bueler ◽  
Michael C Jaskolka ◽  
John L Rubinstein

Vacuolar-type ATPases (V-ATPases) are rotary enzymes that acidify intracellular compartments in eukaryotic cells. These multi-subunit complexes consist of a cytoplasmic V1 region that hydrolyzes ATP and a membrane-embedded VO region that transports protons. V-ATPase activity is regulated by reversible dissociation of the two regions, with the isolated V1 and VO complexes becoming autoinhibited upon disassembly and subunit C subsequently detaching from V1. In yeast, assembly of the V1 and VO regions is mediated by the RAVE complex through an unknown mechanism. We used cryoEM of yeast V-ATPase to determine structures of the intact enzyme, the dissociated but complete V1 complex, and the V1 complex lacking subunit C. Upon separation, V1 undergoes a dramatic conformational rearrangement, with its rotational state becoming incompatible for reassembly with VO. Loss of subunit C allows V1 to match the rotational state of VO, suggesting how RAVE could reassemble V1 and VO by recruiting subunit C.


2021 ◽  
Vol 2 (6) ◽  
pp. 220
Author(s):  
G. Cascioli ◽  
S. Hensley ◽  
F. De Marchi ◽  
D. Breuer ◽  
D. Durante ◽  
...  

2021 ◽  
Author(s):  
Gael Cascioli ◽  
Scott Hensley ◽  
Fabrizio DE MARCHI ◽  
Doris Breuer ◽  
Daniele Durante ◽  
...  

Author(s):  
Lola González-Sánchez ◽  
Ersin Yurtsever ◽  
Barry P. Mant ◽  
Roland Wester ◽  
Franco A. Gianturco

Views of quantum potentials for CN− with He and Ar. Dynamics of the anion's rotational state-changes models cooling kinetics for either buffer gases in cold traps.


2020 ◽  
Vol 125 (11) ◽  
Author(s):  
Patrick R. Stollenwerk ◽  
Ivan O. Antonov ◽  
Sruthi Venkataramanababu ◽  
Yen-Wei Lin ◽  
Brian C. Odom

Sign in / Sign up

Export Citation Format

Share Document