ground potential
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 49)

H-INDEX

15
(FIVE YEARS 2)

2022 ◽  
Vol 2148 (1) ◽  
pp. 012049
Author(s):  
Tingji Chen ◽  
Lian Yang ◽  
Weibing Gu ◽  
Haiyang Gao ◽  
Junchi Zhou ◽  
...  

Abstract Grounding device is an indispensable facility for lightning protection of buildings. Nowadays, SGCC (State Grid Corporation of China) is promoting steel structure substations, which are made of metal as a whole including the roof. There are now several grounding approaches when the roof was struck by a lightning flash, including external grounding, nearby grounding, separate grounding and common grounding. This paper took a metal structure substation in Nanjing as an example and calculated its ground potential in case of different grounding system. We came to such conclusions: 1) For substations of separate grounding system, the ground potential after a lightning strike could reach as high as 743.5kV and 230kV with a single earthing electrode and multiple electrodes respectively. 1000μs after the strike, the ground potential is 91.57 kV, which is still a significant threat to humans and equipment inside. 2) Nearby grounding and external grounding are both common grounding system. The peak of ground potential after a lightning strike is 101.4kV and 109kV respectively, much lower than that of separate grounding system. They also have similar waveform and peak time. 3) 3500μs after the lightning strike, the ground potential all over the grid is around 36V. 4) Separate grounding is not a sound choice of grounding system for steel structure substations. From the perspective of cost and discharging capacity, nearby grounding is the most reasonable scheme for a steel structure substation.


2021 ◽  
Vol 198 ◽  
pp. 107364
Author(s):  
Anderson R.J. de Araújo ◽  
Jaimis S.L. Colqui ◽  
Claudiner M. de Seixas ◽  
Sérgio Kurokawa ◽  
Bamdad Salarieh ◽  
...  

Author(s):  
Anderson R. J. de Araujo ◽  
Walter L. M. de Azevedo ◽  
Jose Pissolato Filho

Author(s):  
Anderson R. J. de Araujo ◽  
Wagner C. da Silva ◽  
Jose Pissolato Filho

2021 ◽  
Vol 13 (15) ◽  
pp. 8370
Author(s):  
Nur Alia Farina Mohamad Nasir ◽  
Mohd Zainal Abidin Ab Kadir ◽  
Miszaina Osman ◽  
Muhamad Safwan Abd Rahman ◽  
Ungku Anisa Ungku Amirulddin ◽  
...  

Improving a tower earthing system by reducing the impedance is an effective solution to prevent back flashover from occurring and thus maintaining the sustainable operation of power supply. Knowledge of the soil and earthing structure is an important element when designing an earthing system and to determine the parameters of a transmission line (TL). This paper presents the computation of soil structure interpretation based on several earthing designs using current distribution, electromagnetic interference, grounding, and soil structure analysis (CDEGS) software. The results showed that each tower has a multi-layer soil structure and it was also found that the soil resistivity at the surface layer strongly affected the earthing impedance. Subsequently, it was demonstrated that soil structure and the earthing design arrangement are the two parameters that significantly affected the ground potential rise (GPR). This aspect affects the resistance and impulse impedance of a tower and thus influences the performance of the TL system when subjected to lightning strike, which is undoubtedly one of the major culprits of power outages in Malaysia.


Sign in / Sign up

Export Citation Format

Share Document