gatc site
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 1)

H-INDEX

7
(FIVE YEARS 1)

2019 ◽  
Vol 47 (22) ◽  
pp. 11667-11680 ◽  
Author(s):  
Yannicka S N Mardenborough ◽  
Katerina Nitsenko ◽  
Charlie Laffeber ◽  
Camille Duboc ◽  
Enes Sahin ◽  
...  

Abstract DNA mismatch repair (MMR) maintains genome stability through repair of DNA replication errors. In Escherichia coli, initiation of MMR involves recognition of the mismatch by MutS, recruitment of MutL, activation of endonuclease MutH and DNA strand incision at a hemimethylated GATC site. Here, we studied the mechanism of communication that couples mismatch recognition to daughter strand incision. We investigated the effect of catalytically-deficient Cas9 as well as stalled RNA polymerase as roadblocks placed on DNA in between the mismatch and GATC site in ensemble and single molecule nanomanipulation incision assays. The MMR proteins were observed to incise GATC sites beyond a roadblock, albeit with reduced efficiency. This residual incision is completely abolished upon shortening the disordered linker regions of MutL. These results indicate that roadblock bypass can be fully attributed to the long, disordered linker regions in MutL and establish that communication during MMR initiation occurs along the DNA backbone.


2018 ◽  
Author(s):  
Yannicka SN Mardenborough ◽  
Katerina Nitsenko ◽  
Charlie Laffeber ◽  
Camille Duboc ◽  
Enes Sahin ◽  
...  

AbstractDNA mismatch repair (MMR) maintains genome stability through repair of DNA replication errors. In Escherichia coli, initiation of MMR involves recognition of the mismatch by MutS, recruitment of MutL, activation of endonuclease MutH and DNA strand incision at a hemimethylated GATC site. Here we studied the mechanism of communication that couples mismatch recognition to daughter strand incision. We investigated the effect of catalytically-deficient Cas9 as well as stalled RNA polymerase as roadblocks placed on DNA in between the mismatch and GATC site in ensemble and single molecule nanomanipulation incision assays. The MMR proteins were observed to incise GATC sites beyond a roadblock, albeit with reduced efficiency. This residual incision is completely abolished upon shortening the disordered linker regions of MutL. These results indicate that roadblock bypass can be fully attributed to the long, disordered linker regions in MutL and establish that communication during MMR initiation occurs along the DNA backbone.


2016 ◽  
Vol 14 (02) ◽  
pp. 1641003 ◽  
Author(s):  
Anna Ershova ◽  
Ivan Rusinov ◽  
Mikhail Vasiliev ◽  
Sergey Spirin ◽  
Anna Karyagina

Palindromes are frequently underrepresented in prokaryotic genomes. Palindromic 5[Formula: see text]-GATC-3[Formula: see text] site is a recognition site of different Restriction-Modification (R-M) systems, as well as solitary methyltransferase Dam. Classical GATC-specific R-M systems methylate GATC and cleave unmethylated GATC. On the contrary, methyl-directed Type II restriction endonucleases cleave methylated GATC. Methylation of GATC by Dam methyltransferase is involved in the regulation of different cellular processes. The diversity of functions of GATC-recognizing proteins makes GATC sequence a good model for studying the reasons of palindrome avoidance in prokaryotic genomes.In this work, the influence of R-M systems and solitary proteins on the GATC site avoidance is described by a mathematical model. GATC avoidance is strongly associated with the presence of alternate (methyl-directed or classical Type II R-M system) genes in different strains of the same species, as we have shown for Streptococcus pneumoniae, Neisseria meningitidis, Eubacterium rectale, and Moraxella catarrhalis. We hypothesize that GATC avoidance can result from a DNA exchange between strains with different methylation status of GATC site within the process of natural transformation. If this hypothesis is correct, the GATC avoidance is a sign of a DNA exchange between bacteria with different methylation status in a mixed population.


2005 ◽  
Vol 187 (16) ◽  
pp. 5691-5699 ◽  
Author(s):  
Eva M. Camacho ◽  
Ana Serna ◽  
Cristina Madrid ◽  
Silvia Marqués ◽  
Raúl Fernández ◽  
...  

ABSTRACT DNA adenine methylase (Dam−) mutants of Salmonella enterica serovar Typhimurium contain reduced levels of FinP RNA encoded on the virulence plasmid. Dam methylation appears to regulate finP transcription, rather than FinP RNA stability or turnover. The finP promoter includes canonical −10 and −35 modules and depends on the σ70 factor. Regulation of finP transcription by Dam methylation does not require DNA sequences upstream from the −35 module, indicating that Dam acts at the promoter itself or downstream. Unexpectedly, a GATC site overlapping with the −10 module is likewise dispensable for Dam-mediated regulation. These observations indicate that Dam methylation regulates finP transcription indirectly and suggest the involvement of a host factor(s) responsive to the Dam methylation state of the cell. We provide evidence that one such factor is the nucleoid protein H-NS, which acts as a repressor of finP transcription in a Dam− background. H-NS also restrains transcription of the overlapping traJ gene, albeit in a Dam-independent fashion. Hence, the decreased FinP RNA content found in Dam− hosts of S. enterica appears to result from H-NS-mediated repression of finP transcription.


2001 ◽  
Vol 67 (4) ◽  
pp. 1522-1528 ◽  
Author(s):  
Vincent Burrus ◽  
Cyril Bontemps ◽  
Bernard Decaris ◽  
Gérard Guédon

ABSTRACT A novel type II restriction and modification (R-M) system,Sth368I, which confers resistance to φST84, was found inStreptococcus thermophilus CNRZ368 but not in the very closely related strain A054. Partial sequencing of the integrative conjugative element ICESt1, carried by S. thermophilus CNRZ368 but not by A054, revealed a divergent cluster of two genes, sth368IR and sth368IM. The protein sequence encoded by sth368IR is related to the type II endonucleases R.LlaKR2I and R.Sau3AI, which recognize and cleave the sequence 5′-GATC-3′. The protein sequence encoded by sth368IM is very similar to numerous type II 5-methylcytosine methyltransferases, including M.LlaKR2I and M.Sau3AI. Cell extracts of CNRZ368 but not A054 were found to cleave at the GATC site. Furthermore, the C residue of the sequence 5′-GATC-3′ was found to be methylated in CNRZ368 but not in A054. Cloning and integration of a copy of sth368IR and sth368IMin the A054 chromosome confers on this strain phenotypes similar to those of CNRZ368, i.e., phage resistance, endonuclease activity of cell extracts, and methylation of the sequence 5′-GATC-3′. Disruption of sth368IR removes resistance and restriction activity. We conclude that ICESt1 encodes an R-M system, Sth368I, which recognizes the sequence 5′-GATC-3′ and is related to the Sau3AI and LlaKR2I restriction systems.


1998 ◽  
Vol 180 (22) ◽  
pp. 5913-5920 ◽  
Author(s):  
Marjan van der Woude ◽  
W. Bradley Hale ◽  
David A. Low

ABSTRACT Most of the adenine residues in GATC sequences in theEscherichia coli chromosome are methylated by the enzyme deoxyadenosine methyltransferase (Dam). However, at least 20 GATC sequences remain nonmethylated throughout the cell cycle. Here we examined how the DNA methylation patterns of GATC sequences within the regulatory regions of the pyelonephritis-associated pilus (pap) operon and the glucitol utilization (gut) operon were formed. The results obtained with an in vitro methylation protection assay showed that the addition of the leucine-responsive regulatory protein (Lrp) to pap DNA was sufficient to protect the two GATC sequences in the pap regulatory region, GATC-I and GATC-II, from methylation by Dam. This finding was consistent with previously published data showing that Lrp was essential for methylation protection of these DNA sites in vivo. Methylation protection also occurred at a GATC site (GATC-44.5) centered 44.5 bp upstream of the transcription start site of thegutABD operon. Two proteins, GutR and the catabolite gene activator protein (CAP), bound to DNA sites overlapping the GATC-44.5-containing region of the gutABD operon. GutR, an operon-specific repressor, was essential for methylation protection in vivo, and binding of GutR protected GATC-44.5 from methylation in vitro. In contrast, binding of CAP at a site overlapping GATC-44.5 did not protect this site from methylation. Mutational analyses indicated that gutABD gene regulation was not controlled by methylation of GATC-44.5, in contrast to regulation of Pap pilus expression, which is directly controlled by methylation of thepap GATC-I and GATC-II sites.


1994 ◽  
Vol 22 (5) ◽  
pp. 892-892
Author(s):  
N.I. Shapovlova ◽  
L.A. Zheleznaja ◽  
N.I. Matvienko
Keyword(s):  

1993 ◽  
Vol 21 (24) ◽  
pp. 5794-5794
Author(s):  
Nina I. Shapovalova ◽  
Ludmila A. Zheleznaja ◽  
Nicholas I. Matvienko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document