sequence stretch
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Oliver D Caspari

The N-terminal sequence stretch that defines subcellular targeting for most nuclear encoded chloroplast proteins is usually considered identical to the sequence that is cleaved upon import. Yet here this study shows that for nine out of ten tested Chlamydomonas chloroplast transit peptides, additional sequence past the cleavage site is required to enable chloroplast targeting. Using replacements of native post-cleavage residues with alternative sequences points to a role for unstructured sequence at mature protein N-termini.


2009 ◽  
Vol 90 (12) ◽  
pp. 2849-2854 ◽  
Author(s):  
Sebastian Darr ◽  
Ijad Madisch ◽  
Sören Hofmayer ◽  
Fabienne Rehren ◽  
Albert Heim

The fiber shaft of human adenoviruses (HAdVs) is essential for bringing the penton base into proximity to the secondary cellular receptor. Fiber shaft sequences of all 53 HAdV types were studied. Phylogeny of the fiber shaft revealed clustering corresponding to the HAdV species concept. An intraspecies recombination hot spot was found at the shaft/knob boundary, a highly conserved sequence stretch. For example, HAdV-D20 clustered with HAdV-D23 in the fiber shaft, but with HAdV-D47 in the fiber knob. Although all shafts exhibited the typical pseudorepeats, amino acid sequence identity was found to be as high as 92 % (interspecies) and 54 % (intraspecies). In contrast to a previous study, a flexibility motif (KXGGLXFD/N) was found in eight HAdV-D types, whereas the putative heparan sulfate-binding site (KKTK) was only found in species HAdV-C. Our results suggest that pseudotyping of gene-therapy vectors at the shaft/knob boundary is feasible, but that flexibility data of shafts should be considered.


2007 ◽  
Vol 282 (15) ◽  
pp. 10988-10999 ◽  
Author(s):  
Kathrin Weyer ◽  
Henning B. Boldt ◽  
Christine B. Poulsen ◽  
Kasper Kjaer-Sorensen ◽  
Claus Gyrup ◽  
...  

2003 ◽  
Vol 44 (4) ◽  
pp. 1458 ◽  
Author(s):  
Ingrid Bader ◽  
Oliver Brandau ◽  
Helene Achatz ◽  
Eckart Apfelstedt-Sylla ◽  
Martin Hergersberg ◽  
...  

1992 ◽  
Vol 282 (2) ◽  
pp. 523-532 ◽  
Author(s):  
J J Calvete ◽  
K Mann ◽  
M V Alvarez ◽  
M M López ◽  
J González-Rodríguez

Human platelet glycoproteins IIb (GPIIb) and IIIa (GPIIIa) form the subunits of the Ca(2+)-dependent heterodimer GPIIb/IIIa, which belongs to the integrin family of phylogenetically related receptors mediating a wide variety of cell-cell and cell-substratum interactions. GPIIb/IIIa plays a central role in haemostasis as a receptor for fibrinogen and other adhesive proteins at the surface of activated platelets. The covalent structure of the subunits is largely known; however, the tertiary and quaternary structures of the heterodimer remain to be determined. To this end, our approach consisted of limited proteolysis of the isolated heterodimer with proteinases of different specificities, followed by protein-chemical and immunochemical analyses of the peptide fragments within each isolated proteolytic product. From the information obtained, we have drawn a rudimentary map which outlines the demarcation of compact domains and the subunit peptide stretches carrying the sequences putatively involved in intrachain, intrasubunit and intersubunit non-covalent connectivity in the heterodimer. Three compact domains have been well defined: one in the heavy (H) chain of GPIIb [GPIIbH-(600-700)], and two in GPIIIa, the N-terminal [GPIIIa-(1-52)] and the core [GPIIIa-(423-622)] domains. Between the latter two domains there is a proteolysis-susceptible region, which is partly involved in ligand binding [GPIIIa-(100-220)] and partly implicated as being in teh subunit interface of the heterodimer. Contrary to GPIIIa, GPIIbH is highly susceptible to proteolysis all along its sequence. Equally susceptible are the extracellular end of the transmembrane segment of both GPIIIa and the light (L) chain of GPIIb (GPIIbL), and the N-terminal end of GPIIbL. Three sequence stretches along the C-terminal half of GPIIbH, one sequence stretch in GPIIbL and three sequence stretches within the GPIIIa-(217-421) region were putatively involved in the subunit interface of the heterodimer. Most likely, the N-terminal end of GPIIbL is folded over the N- and C-terminal regions of GPIIbH, and the N-terminal end of GPIIbH is folded against the GPIIbH-(600-700) domain. This map of GPIIb/IIIa does not fit the current accommodation of the amino acid sequence of GPIIb and GPIIIa in the head/two-tails image of the heterodimer obtained by metal-rotary-shadowing electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document