gp140 trimer
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 1)

2019 ◽  
Vol 93 (20) ◽  
Author(s):  
Johannes S. Gach ◽  
Kane J. V. Mara ◽  
Celia C. LaBranche ◽  
Marit J. van Gils ◽  
Laura E. McCoy ◽  
...  

ABSTRACT Immune complex (IC) vaccines have been successfully used to increase immune responses against various pathogens, including HIV-1. Additionally, IC vaccines can induce qualitatively different antibody responses, with distinct antigenic specificities compared to the same antigens used alone. Here we measured the HIV-1-specific antibody responses in female New Zealand White rabbits after immunization with ICs made from BG505 SOSIP.664 trimers (BG505 trimers) and three rabbit monoclonal antibodies (MAbs) with different neutralization profiles. Two of the MAbs were specific for a hole in the glycan shield of the BG505 trimer, while the third, which bound less avidly, was specific for determinants at the gp41-gp120 interface. We found that immunization with one of the glycan-hole-specific ICs resulted in lower levels of trimer-binding antibodies compared to vaccination with the uncomplexed trimer, and that ICs made using either of the glycan-hole-specific MAbs resulted in lower rates of anti-trimer antibody decay. We concluded that ICs based on MAbs that bound to the immunodominant glycan hole epitope likely diverted antibody responses, to some extent, away from this site and to other regions of the trimer. However, this outcome was not accompanied by a widening of the breadth or an increase in the potency of neutralizing antibody responses compared with uncomplexed trimers. IMPORTANCE Immunodominant epitopes may suppress immune responses to more desirable determinants, such as those that elicit potentially protective neutralizing antibody responses. To overcome this problem, we attempted to mask immunodominant glycan holes by immunizing rabbits with ICs consisting of the BG505 SOSIP.664 gp140 trimer and MAbs that targeted the glycan holes. We found that IC vaccination likely diverted antibody responses, to some extent, away from the glycan holes and toward other regions of the trimer. IC vaccination resulted in slower decay of HIV-1-specific antibodies than did immunization with uncomplexed trimer. We did not observe a widening of the breadth or an increase in the potency of neutralizing antibody responses compared to uncomplexed trimers. Our results suggest that selective epitope dampening of BG505 trimers by ICs is rather ineffective. However, IC vaccination may represent a novel means of increasing the duration of vaccine-induced antibody responses.


2017 ◽  
Vol 114 (17) ◽  
pp. 4477-4482 ◽  
Author(s):  
Yongfei Cai ◽  
Selen Karaca-Griffin ◽  
Jia Chen ◽  
Sai Tian ◽  
Nicholas Fredette ◽  
...  

The extraordinary genetic diversity of the HIV-1 envelope spike [Env; trimeric (gp160)3, cleaved to (gp120/gp41)3] poses challenges for vaccine development. Envs of different clinical isolates exhibit different sensitivities to antibody-mediated neutralization. Envs of difficult-to-neutralize viruses are thought to be more stable and conformationally homogeneous trimers than those of easy-to-neutralize viruses, thereby providing more effective concealment of conserved, functionally critical sites. In this study we have characterized the antigenic properties of an Env derived from one of the most neutralization-resistant HIV-1 isolates, CH120.6. Sequence variation at neutralizing epitopes does not fully account for its exceptional resistance to antibodies. The full-length, membrane-bound CH120.6 Env is indeed stable and conformationally homogeneous. Its antigenicity correlates closely with its neutralization sensitivity, and major changes in antigenicity upon CD4 engagement appear to be restricted to the coreceptor site. The CH120.6 gp140 trimer, the soluble and uncleaved ectodomain of (gp160)3, retains many antigenic properties of the intact Env, consistent with a conformation close to that of Env spikes on a virion, whereas its monomeric gp120 exposes many nonneutralizing or strain-specific epitopes. Thus, trimer organization and stability are important determinants not only for occluding many epitopes but also for conferring resistance to neutralization by all but a small set of antibodies. Env preparations derived from neutralization-resistant viruses may induce irrelevant antibody responses less frequently than do other Envs and may be excellent templates for developing soluble immunogens.


2017 ◽  
Vol 91 (10) ◽  
Author(s):  
Yuhang Liu ◽  
Junhua Pan ◽  
Yongfei Cai ◽  
Nikolaus Grigorieff ◽  
Stephen C. Harrison ◽  
...  

ABSTRACT The HIV-1 envelope spike [Env; trimeric (gp160)3 cleaved to (gp120/gp41)3] induces membrane fusion, leading to viral entry. It is also the viral component targeted by neutralizing antibodies. Vaccine development requires production, in quantities suitable for clinical studies, of a recombinant form that resembles functional Env. HIV-1 gp140 trimers—the uncleaved ectodomains of (gp160)3—from a few selected viral isolates adopt a compact conformation with many antigenic properties of native Env spikes. One is currently being evaluated in a clinical trial. We report here low-resolution (20 Å) electron cryomicroscopy (cryoEM) structures of this gp140 trimer, which adopts two principal conformations, one closed and the other slightly open. The former is indistinguishable at this resolution from those adopted by a stabilized, cleaved trimer (SOSIP) or by a membrane-bound Env trimer with a truncated cytoplasmic tail (EnvΔCT). The latter conformation is closer to a partially open Env trimer than to the fully open conformation induced by CD4. These results show that a stable, uncleaved HIV-1 gp140 trimer has a compact structure close to that of native Env. IMPORTANCE Development of any HIV vaccine with a protein component (for either priming or boosting) requires production of a recombinant form to mimic the trimeric, functional HIV-1 envelope spike in quantities suitable for clinical studies. Our understanding of the envelope structure has depended in part on a cleaved, soluble trimer, known as SOSIP.664, stabilized by several modifications, including an engineered disulfide. This construct, which is difficult to produce in large quantities, has yet to induce better antibody responses than those to other envelope-based immunogens, even in animal models. The uncleaved ectodomain of the envelope protein, called gp140, has also been made as a soluble form to mimic the native Env present on the virion surface. Most HIV-1 gp140 preparations are not stable, however, and have an inhomogeneous conformation. The results presented here show that gp140 preparations from suitable isolates can adopt a compact, native-like structure, supporting its use as a vaccine candidate.


2015 ◽  
Vol 71 (10) ◽  
pp. 2099-2108 ◽  
Author(s):  
Leopold Kong ◽  
Alba Torrents de la Peña ◽  
Marc C. Deller ◽  
Fernando Garces ◽  
Kwinten Sliepen ◽  
...  

The HIV-1 envelope gp160 glycoprotein (Env) is a trimer of gp120 and gp41 heterodimers that mediates cell entry and is the primary target of the humoral immune response. Broadly neutralizing antibodies (bNAbs) to HIV-1 have revealed multiple epitopes or sites of vulnerability, but mapping of most of these sites is incomplete owing to a paucity of structural information on the full epitope in the context of the Env trimer. Here, a crystal structure of the soluble BG505 SOSIP gp140 trimer at 4.6 Å resolution with the bNAbs 8ANC195 and PGT128 reveals additional interactions in comparison to previous antibody–gp120 structures. For 8ANC195, in addition to previously documented interactions with gp120, a substantial interface with gp41 is now elucidated that includes extensive interactions with the N637 glycan. Surprisingly, removal of the N637 glycan did not impact 8ANC195 affinity, suggesting that the antibody has evolved to accommodate this glycan without loss of binding energy. PGT128 indirectly affects the N262 glycan by a domino effect, in which PGT128 binds to the N301 glycan, which in turn interacts with and repositions the N262 glycan, thereby illustrating the important role of neighboring glycans on epitope conformation and stability. Comparisons with other Env trimer and gp120 structures support an induced conformation for glycan N262, suggesting that the glycan shield is allosterically modified upon PGT128 binding. These complete epitopes of two broadly neutralizing antibodies on the Env trimer can now be exploited for HIV-1 vaccine design.


2014 ◽  
Vol 88 (17) ◽  
pp. 9538-9552 ◽  
Author(s):  
J. P. Nkolola ◽  
C. A. Bricault ◽  
A. Cheung ◽  
J. Shields ◽  
J. Perry ◽  
...  
Keyword(s):  
Hiv 1 ◽  

Vaccine ◽  
2014 ◽  
Vol 32 (18) ◽  
pp. 2109-2116 ◽  
Author(s):  
Joseph P. Nkolola ◽  
Ann Cheung ◽  
James R. Perry ◽  
Darrick Carter ◽  
Steve Reed ◽  
...  
Keyword(s):  
Clade C ◽  
Hiv 1 ◽  

Retrovirology ◽  
2012 ◽  
Vol 9 (S2) ◽  
Author(s):  
JP Nkolola ◽  
JM Kovacs ◽  
B Korber ◽  
B Chen ◽  
M Seaman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document