boron deficiency
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 46)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Vol 176 ◽  
pp. 114332
Author(s):  
Qi Yin ◽  
Lu Kang ◽  
Yi Liu ◽  
Mirza Faisal Qaseem ◽  
Wenqi Qin ◽  
...  
Keyword(s):  

2021 ◽  
pp. 45633
Author(s):  
Aziz Mahdi Al-Shammari ◽  
Ghassan Jaafar Hamdi ◽  
Solieman Daowd Najm Abdullah

Introduction. Low seedbed temperatures at the planting and the direct sowing method can reduce the sweet corn germination. Transplanting may offer optimum environmental conditions for seed germination, early crop maturity, and increase sweet corn (Zea mays L. group saccharata) productivity. Boron deficiency depresses sweet corn yield through male sterility. Objective. To evaluate the effect of transplanting and the addition of boron in sweet corn production. Materials and methods. A field experiment was conducted from March 19 to June 20, 2020 at the Research Station of Horticulture Department and Landscape Gardening Architecture, University of Diyala, Baqubah, Iraq. Direct sowing and transplanting, and foliar application of boron at 0, 50, or 75 mg L-1 was evaluated to determine effects on the yield, the yield components, and water use efficiency of sweet corn cultivars: Roi Soleal, Seker misir, and Succar. Results. The cv. Seker Misir matured faster (57.5 days), had wider ears (4.53 cm), more kernel rows (16.0), the highest kernel yield (6.00 t ha-1), and a higher water use efficiency (WUE) (2.85 kg m-3). The cv. Succar had the longest ears (18.48 cm) and the heaviest fresh ears (251 g). Transplanting hastened the time to maturity (54.18 days), and produced the longest ears (17.91 cm), widest ears (4.52 cm), most kernel rows (15.96), heaviest fresh ears (229 g), the highest kernel yield (5.56 t ha-1), and the highest WUE (2.64 kg m-3). The 50 mg L-1 fertilizer treatment produced the longest ears (17.61 cm), widest ears (4.58 cm), more kernel rows (16.61), the highest kernel yield (5.64 t ha-1), and the highest WUE (2.68 kg m-3). The least time to maturity (57.72 days) and heaviest fresh ears (232 g) occurred with 75 mg L-1 of boron fertilizer. Conclusion. The use of 50 mg L-1 boron, as a foliar fertilizer, appears to be, next to the transplanting method, suitable for the cultivation of sweet corn plants to increase productivity and WUE.


2021 ◽  
Author(s):  
Xiangling Wang ◽  
Zhenzhen Wu ◽  
Baiquan Song ◽  
Xiaoyu Zhao ◽  
Xin Song

Abstract (Aims) Sugar beet is one of the most sensitive crops to boron and boron deficiency inhibits the root growth and causes hollow symptoms in beets. However, how the roots of boron efficient sugar beet variety adapt to the morphology, physiological, and transcriptome mechanisms of boron deficiency are rarely reported. (Method) Thus, the present study was carried out with B efficient sugar beet variety (H, KWS1197) and B inefficient variety (L, KWS0143), and two B levels i.e., B0.1 (0.1 μM H3BO3, deficiency) and B50 (50 μM H3BO3, control) were designed for hydroponic experiment. (Result) Boron deficiency reduced the total root length, root forks, and root biomass of sugar beet. Compared with L variety, H variety have higher boron transport coefficient, boron distribution ratio above ground, peroxidase and catalase activities, lower malondialdehyde content and reactive oxygen species accumulation. Transcriptome data showed that the two comparison groups, HB0.1 vs HB50 and LB0.1 vs LB50, were enriched for 537 and 257 differentially expressed genes, respectively. The H variety mainly induced and regulated the GO term enrichment associated with antioxidant and stress resistance. On the contrary, the L variety induced cell death and negative regulation of biological and metabolic processes. (Conclusion) B efficient variety specifically up-regulated boron deficiency response genes to activate the antioxidant enzyme system, promoted rational root configuration, and enhance plant growth anti-oxidation and resistance to boron deficiency. The results of this study serve as a theoretical basis of screening candidate genes that respond to boron deficiency and adaptation mechanism of boron deficiency.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009661
Author(s):  
Mingliang He ◽  
Sheliang Wang ◽  
Cheng Zhang ◽  
Liu Liu ◽  
Jinyao Zhang ◽  
...  

Boron (B) is essential for vascular plants. Rapeseed (Brassica napus) is the second leading crop source for vegetable oil worldwide, but its production is critically dependent on B supplies. BnaA3.NIP5;1 was identified as a B-efficient candidate gene in B. napus in our previous QTL fine mapping. However, the molecular mechanism through which this gene improves low-B tolerance remains elusive. Here, we report genetic variation in BnaA3.NIP5;1 gene, which encodes a boric acid channel, is a key determinant of low-B tolerance in B. napus. Transgenic lines with increased BnaA3.NIP5;1 expression exhibited improved low-B tolerance in both the seedling and maturity stages. BnaA3.NIP5;1 is preferentially polar-localized in the distal plasma membrane of lateral root cap (LRC) cells and transports B into the root tips to promote root growth under B-deficiency conditions. Further analysis revealed that a CTTTC tandem repeat in the 5’UTR of BnaA3.NIP5;1 altered the expression level of the gene, which is tightly associated with plant growth and seed yield. Field tests with natural populations and near-isogenic lines (NILs) confirmed that the varieties carried BnaA3.NIP5;1Q allele significantly improved seed yield. Taken together, our results provide novel insights into the low-B tolerance of B. napus, and the elite allele of BnaA3.NIP5;1 could serve as a direct target for breeding low-B-tolerant cultivars.


Sign in / Sign up

Export Citation Format

Share Document