scholarly journals Genetic variation of BnaA3.NIP5;1 expressing in the lateral root cap contributes to boron deficiency tolerance in Brassica napus

PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009661
Author(s):  
Mingliang He ◽  
Sheliang Wang ◽  
Cheng Zhang ◽  
Liu Liu ◽  
Jinyao Zhang ◽  
...  

Boron (B) is essential for vascular plants. Rapeseed (Brassica napus) is the second leading crop source for vegetable oil worldwide, but its production is critically dependent on B supplies. BnaA3.NIP5;1 was identified as a B-efficient candidate gene in B. napus in our previous QTL fine mapping. However, the molecular mechanism through which this gene improves low-B tolerance remains elusive. Here, we report genetic variation in BnaA3.NIP5;1 gene, which encodes a boric acid channel, is a key determinant of low-B tolerance in B. napus. Transgenic lines with increased BnaA3.NIP5;1 expression exhibited improved low-B tolerance in both the seedling and maturity stages. BnaA3.NIP5;1 is preferentially polar-localized in the distal plasma membrane of lateral root cap (LRC) cells and transports B into the root tips to promote root growth under B-deficiency conditions. Further analysis revealed that a CTTTC tandem repeat in the 5’UTR of BnaA3.NIP5;1 altered the expression level of the gene, which is tightly associated with plant growth and seed yield. Field tests with natural populations and near-isogenic lines (NILs) confirmed that the varieties carried BnaA3.NIP5;1Q allele significantly improved seed yield. Taken together, our results provide novel insights into the low-B tolerance of B. napus, and the elite allele of BnaA3.NIP5;1 could serve as a direct target for breeding low-B-tolerant cultivars.

1998 ◽  
Vol 49 (5) ◽  
pp. 867 ◽  
Author(s):  
Youzhang Wei ◽  
R. W. Bell ◽  
Yuai Yang ◽  
Zhengqian Ye ◽  
Ke Wang ◽  
...  

In areas where soils are low in boron (B), the ability to predict B deficiency by plant analysis depends on the development of calibrated standards and offers the potential of preventing or minimising losses in seed yield. The present study aimed at establishing relationships between seed yield in winter oilseed rape (Brassica napus) and B concentrations in defined leaves during growth before fiowering and from them to determine critical values for the prognosis of B deficiency. Oilseed rape cv. Zheyouyou 2 was grown in 10 field experiments in Zhejiang province, south-east China, with B rates from 0 to 3· 3 kg/ha. At 4 of the sites, oilseed rape was resown in the following year to assess seasonal effects on critical concentrations. Experiments were conducted on the 3 main soil groups on which oilseed rape is grown in south-east China. The youngest open leaf (YOL) was selected as the sampling part because its B concentrations were strongly responsive to increasing B supply and well correlated with seed yield response. In this study, the best model of the relationship between YOL B concentration and yield was the Mitscherlich equation, which explained 68-89% of the variation in the data. The calculated critical range in the YOL at seedling stage was 20-25 mg B/kg and appeared to be valid in 2 seasons and on 3 soil types. The critical B range for prognosis of B deficiency was found to predict consistently those crops in farmers" fields that had low seed yield and low soil B, but needs to be evaluated in other growing environments especially those for spring rape.


Author(s):  
Y. R. Chen ◽  
Y. F. Huang ◽  
W. S. Chen

Acid phosphatases are widely distributed in different tisssues of various plants. Studies on subcellular localization of acid phosphatases show they might be present in cell wall, plasma lemma, mitochondria, plastid, vacuole and nucleus. However, their localization in rice cell varies with developmental stages of cells and plant tissues. In present study, acid phosphatases occurring in root cap are examined.Sliced root tips of ten-day-old rice(Oryza sativa) seedlings were fixed in 0.1M cacodylate buffer containing 2.5% glutaraldehyde for 2h, washed overnight in same buffer solution, incubated in Gomori's solution at 37° C for 90min, post-fixed in OsO4, dehydrated in ethanol series and finally embeded in Spurr's resin. Sections were doubly stained with uranyl acetate and lead citrate, and observed under Hitachi H-600 at 75 KV.


Genetics ◽  
1975 ◽  
Vol 80 (4) ◽  
pp. 785-805
Author(s):  
P T Spieth

ABSTRACT Electrophoretically detectable variation in the fungus Neurospora intermedia has been surveyed among isolates from natural populations in Malaya, Papua, Australia and Florida. The principal result is a pattern of genetic variation within and between populations that is qualitatively no different than the well documented patterns for Drosophila and humans. In particular, there is a high level of genetic variation, the majority of which occurs at the level of local populations. Evidence is presented which argues that N. intermedia has a population structure analogous to that of an annual vascular plant with a high level of vegetative reproduction. Sexual reproduction appears to be a regular feature in the biology of the species. Substantial heterokaryon function seems unlikely in natural populations of N. intermedia. Theoretical considerations concerning the mechanisms underlying the observed pattern of variation most likely should be consistent with haploid selection theory. The implications of this constraint upon the theory are discussed in detail, leading to the presentation of a model based upon the concept of environmental heterogeneity. The essence of the model, which is equally applicable to haploid and diploid situations, is a shifting distribution of multiple adaptive niches among local populations such that a given population has a small net selective pressure in favor of one allele or another, depending upon its particular distribution of niches. Gene flow among neighboring populations with differing net selective pressures is postulated as the principal factor underlying intrapopulational allozyme variation.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1487-1493 ◽  
Author(s):  
Andrew G Clark ◽  
David J Begun

Abstract Differential success of sperm is likely to be an important component of fitness. Extensive variation among male genotypes in competitive success of sperm in multiply mated females has been documented for Drosophila melanogaster. However, virtually all previous studies considered the female to be a passive vessel. Nevertheless, under certain conditions female fitness could be determined by her role in mediating use of sperm from multiple males. Here we ask whether females differ among genotypes in their tendency to exhibit last-male precedence. Competition of sperm from two tester male genotypes (bwD and B3-09, a third-chromosome isogenic line from Beltsville, MD) was quantified by doubly mating female lines that had been rendered homozygous for X, second, or third chromosomes isolated from natural populations. The composite sperm displacement parameter, P2′, was highly heterogeneous among lines, whether or not viability effects were compensated, implying the presence of polymorphic genes affecting access of sperm to eggs. Genetic variation of this type is completely neutral in the absence of pleiotropy or interaction between variation in the two sexes.


2021 ◽  
Vol 22 (3) ◽  
pp. 1297
Author(s):  
Dong Xu ◽  
Zhuchou Lu ◽  
Guirong Qiao ◽  
Wenmin Qiu ◽  
Longhua Wu ◽  
...  

Lateral root (LR) formation promotes plant resistance, whereas high-level ethylene induced by abiotic stress will inhibit LR emergence. Considering that local auxin accumulation is a precondition for LR generation, auxin-induced genes inhibiting ethylene synthesis may thus be important for LR development. Here, we found that auxin response factor 4 (SaARF4) in Sedum alfredii Hance could be induced by auxin. The overexpression of SaARF4 decreased the LR number and reduced the vessel diameters. Meanwhile, the auxin distribution mode was altered in the root tips and PIN expression was also decreased in the overexpressed lines compared with the wild-type (WT) plants. The overexpression of SaARF4 could reduce ethylene synthesis, and thus, the repression of ethylene production decreased the LR number of WT and reduced PIN expression in the roots. Furthermore, the quantitative real-time PCR, chromatin immunoprecipitation sequencing, yeast one-hybrid, and dual-luciferase assay results showed that SaARF4 could bind the promoter of 1-aminocyclopropane-1-carboxylate oxidase 4 (SaACO4), associated with ethylene biosynthesis, and could downregulate its expression. Therefore, we concluded that SaARF4 induced by auxin can inhibit ethylene biosynthesis by repressing SaACO4 expression, and this process may affect auxin transport to delay LR development.


2021 ◽  
Vol 161 ◽  
pp. 36-45
Author(s):  
Ge Song ◽  
Xueping Li ◽  
Raheel Munir ◽  
Ali Raza Khan ◽  
Wardah Azhar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document