scholarly journals Boron Efficient Sugar Beet (Beta Vulgaris L.) Variety Relieve The Symptoms of Boron Deficiency By Enhancing The Antioxidation And Boron Utilization Capacity of The Root System

Author(s):  
Xiangling Wang ◽  
Zhenzhen Wu ◽  
Baiquan Song ◽  
Xiaoyu Zhao ◽  
Xin Song

Abstract (Aims) Sugar beet is one of the most sensitive crops to boron and boron deficiency inhibits the root growth and causes hollow symptoms in beets. However, how the roots of boron efficient sugar beet variety adapt to the morphology, physiological, and transcriptome mechanisms of boron deficiency are rarely reported. (Method) Thus, the present study was carried out with B efficient sugar beet variety (H, KWS1197) and B inefficient variety (L, KWS0143), and two B levels i.e., B0.1 (0.1 μM H3BO3, deficiency) and B50 (50 μM H3BO3, control) were designed for hydroponic experiment. (Result) Boron deficiency reduced the total root length, root forks, and root biomass of sugar beet. Compared with L variety, H variety have higher boron transport coefficient, boron distribution ratio above ground, peroxidase and catalase activities, lower malondialdehyde content and reactive oxygen species accumulation. Transcriptome data showed that the two comparison groups, HB0.1 vs HB50 and LB0.1 vs LB50, were enriched for 537 and 257 differentially expressed genes, respectively. The H variety mainly induced and regulated the GO term enrichment associated with antioxidant and stress resistance. On the contrary, the L variety induced cell death and negative regulation of biological and metabolic processes. (Conclusion) B efficient variety specifically up-regulated boron deficiency response genes to activate the antioxidant enzyme system, promoted rational root configuration, and enhance plant growth anti-oxidation and resistance to boron deficiency. The results of this study serve as a theoretical basis of screening candidate genes that respond to boron deficiency and adaptation mechanism of boron deficiency.

Author(s):  
V. Z. Venevtsev ◽  
М. N. Zakharova ◽  
L. V. Rozhkova

Ryazan region annually receives stable yields of sugar beet roots 40 t/ha. Further growth of yields depends on balanced nutrition of plants cultivated hybrids, from the quality of the soil and of the phytosanitary State of sowing culture. Weed vegetation in wider spaced row crops of sugar beet in the initial periods of vegetation is high competition culture. The article presents the results of three studies on the effectiveness of the herbicide betanalnoj group, used to reduce contamination of sowing culture annual dicotyledonous weeds and increase the harvest of sugar beet roots. Studies conducted on experimental fields ISSA-branch FGBNU FNAC WIM (former AGRICULTURAL RESEARCH INSTITUTE in Ryazan). Soil: dark grey forest tjazhelosuglinistaja, humus content 4.0%, potassium and phosphorus-high pH is 5.8. Area of cultivated plots 50 m2, repetition, four sugar beet variety-Ocean. The predecessor-winter wheat. Under the autumn ploughing had made NPK120 under presowing cultivation-N60, SEV conducted seeder sowing machine. For crop protection herbicides were tested annually of sugar beet Betanal progress, UF-1.0 l/HA, Forte di Belvedere-1.0 l/HA, Betanal Max Pro-1.5 l/HA, Bajrang engineering works Super-1.5 l/HA, once applied to weeds. The harvest of sugar beet roots, take into account the square 10 m2 in 4-times repeated with each experimental plot by weighing machinery, processed data by ANOVA. The research found that studied herbicides efficiently at 87-92%, reduced infestation annual dicotyledonous weeds and increase the harvest of sugar beet roots to 29.9-44.1%


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1181
Author(s):  
Roma Durak ◽  
Jan Dampc ◽  
Monika Kula-Maximenko ◽  
Mateusz Mołoń ◽  
Tomasz Durak

Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids Aphis pomi, Macrosiphum rosae and Cinara cupressi, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), β-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids’ development, and a negative correlation between the activity of the antioxidant enzymes and aphids’ development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and β-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures.


2009 ◽  
Vol 116 (1) ◽  
pp. 7-9 ◽  
Author(s):  
R. Koenig ◽  
B. Holtschulte ◽  
G. Deml ◽  
P. Lüddecke ◽  
S. Schuhmann ◽  
...  

2013 ◽  
Vol 41 (2) ◽  
pp. 524 ◽  
Author(s):  
Qiu-Dan NI ◽  
Ying-Ning ZOU ◽  
Qiang-Sheng WU ◽  
Yong-Ming HUANG

Arbuscular mycorrhizal fungi (AMF) can enhance tolerance of plants to soil water deficit, whereas morphological observations of reactive oxygen species and antioxidant enzyme system are poorly studied. The present study thereby evaluated temporal variations of the antioxidant enzyme system in citrus (Citrus tangerina) seedlings colonized by Glomus etunicatum and G. mosseae over a 12-day period of soil drying. Root colonization by G. etunicatum and G. mosseae decreased with soil drying days from 32.0 to 1.0% and 50.1 to 4.5% in 0-day to 12-day, respectively. Compared to the non-AM controls, the AMF colonized plants had significantly lower tissue (both leaves and roots) hydrogen peroxide (H2O2) and superoxide anion radical (O2•–) concentrations during soil water deficit, whereas 1.03–1.92, 1.25–1.84 and 1.18–1.69 times higher enzyme activity in superoxide dismutase, peroxidase (POD) and catalase. In situ leaf H2O2 and root POD location also showed that AM seedlings had less leaf H2O2 but higher root POD accumulation. Furthermore, significantly higher root infection and antioxidant enzymatic activities in plants colonized with G. mosseae expressed than with G. etunicatum during the soil drying. These results demonstrated that the AMs could confer greater tolerance of citrus seedlings to soil water deficit through an enhancement in their antioxidant enzyme defence system whilst an decrease level in H2O2 and O2•–.


1996 ◽  
Vol 105 (3) ◽  
pp. 195-202 ◽  
Author(s):  
Shuji Oh-ishi ◽  
Koji Toshinai ◽  
Takako Kizaki ◽  
Shukoh Haga ◽  
Koichi Fukuda ◽  
...  

2019 ◽  
Vol 6 (8) ◽  
pp. 2626-2640 ◽  
Author(s):  
Peifang Wang ◽  
Kun Li ◽  
Jin Qian ◽  
Chao Wang ◽  
Bianhe Lu ◽  
...  

A first attempt to compare the eco-toxicities of An-NPs and Ru-NPs to freshwater biofilms in terms of the spatiotemporal microenvironment.


Sign in / Sign up

Export Citation Format

Share Document