ebt2 film
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 3)

H-INDEX

16
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Hala I. El-Naggar ◽  
Mahmoud El Ghazaly ◽  
Tarek Talaat Salama ◽  
Mahmoud S. Dawood

2020 ◽  
Vol 10 (1) ◽  
pp. 42
Author(s):  
Masoumeh Dorri-Giv ◽  
Leyla Ansari ◽  
Neda Nasiri ◽  
Fahimeh Aminolroayaei ◽  
KarimGhazikhanlou Sani ◽  
...  

2018 ◽  
Vol 18 (1) ◽  
pp. 88-92 ◽  
Author(s):  
Manny Mathuthu ◽  
Nhlakanipho Wisdom Mdziniso ◽  
Yihunie Hibstie Asres

AbstractBackgroundRecent investigations demonstrate a strong potential for cobalt-60 (Co-60)-based teletherapy. The influence of the lower energy and penetration of a cobalt-60 beam compared with linear accelerator beams is negligible for intensity-modulated radiotherapy.PurposeThe aim of this research is to investigate source head fluence modulation in cobalt-60 teletherapy by using a three-dimensional (3D) physical compensator and secondary collimator jaw motion.Materials and methodsThe Oncentra treatment planning system was used to develop three hypothetical plans by secondary collimator jaw motion. A clinical MDS Nordion Equinox 80 cobalt-60 teletherapy unit was used to acquire conventional water phantom beam characteristics. Fluence modulation experiments were executed at 5·0 cm depth in a PTW universal intensity-modulated radiation therapy (IMRT) verification phantom using calibrated Gafchromic external beam therapy 2 (EBT2) and RTQA2-1010 film batches. Gafchromic EBT2 film was used to sample intensity maps generated by secondary collimator jaw motion, yet Gafchromic RTQA2-1010 film sampled maps from the 3D physical compensator. The solid-state drives used were 75·0 and 74·3 cm for the Gafchromic EBT2 and Gafchromic RTQA2-1010 film measurements.ResultsA 2D gamma index analysis was coded to compare EBT2 film measurements with Digital Imaging and Communications in Medicine data. This analysis was also used to verify film measurements versus Monte-Carlo simulations.ConclusionLateral beam profiles generated from water phantom measurements were used to establish source head fluence modulation on the film measurements. The source head fluence of a cobalt-60 teletherapy beam could be modulated by secondary collimator jaw motion and using a 3D physical compensator.


2018 ◽  
Vol 17 (4) ◽  
pp. 403-410 ◽  
Author(s):  
Khalid Iqbal ◽  
Geoffrey S. Ibbott ◽  
Ryan G. Lafratta ◽  
Kent A. Gifford ◽  
Muhammad Akram ◽  
...  

AbstractPurposeTo determine the feasibility of an anthropomorphic breast polyurethane-based three-dimensional (3D) dosimeter with cavity to measure dose distributions and skin dose for a commercial strut-based applicator strut-adjusted volume implant (SAVI™) 6–1.Materials and methodsAn anthropomorphic breast 3D dosimeter was created with a cavity to accommodate the SAVI™ strut-based device. 2 Gy was prescribed to the breast dosimeter having D95 to planning target volume evaluation (PTV_EVAL) while limiting 125% of the prescribed dose to the skin. Independent dose distribution verification was performed with GAFCHROMIC® EBT2 film. The dose distribution from the 3D dosimeter was compared to the distributions from commercial brachytherapy treatment planning system (TPS) and film. Point skin doses, line profiles and dose–volume histogram (DVHs) for the skin and PTV_EVAL were compared.ResultsThe maximum difference in skin dose for TPS and the 3D dosimeter was 4% whereas 41% between the TPS and EBT2 film. The maximum dose difference for line profiles between TPS, 3D dosimeter, and film was 4·1%. DVHs of skin and PTV_EVAL for TPS and 3D dosimeter differed by a maximum of 4% at 5 mm depth and skin differed by a maximum 1·5% between TPS and 3D dosimeter. The criterion for gamma analysis comparison was 92·5% at ±5%±3 mm criterion. The TPS demonstrated at least ±5% comparability in predicting dose to the skin, PTV_EVAL and normal breast tissue.Conclusions3D anthropomorphic polyurethane dosimeter with cavity gives comparable results to the TPS dose predictions and GAFCHROMIC® EBT2 film results in the context of HDR brachytherapy.


2017 ◽  
Vol 17 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Khalid Iqbal ◽  
Geoffrey S. Ibbott ◽  
Ryan Grant Lafratta ◽  
Kent A. Gifford ◽  
Saeed A. Buzdar

AbstractPurposeWhole-breast external beam radiotherapy results in significant reduction in the risk for breast cancer-related death, but this may be offset by an increase in deaths from other causes and toxicity to surrounding organs. Partial breast irradiation techniques are approaches that treat only the lumpectomy area rather than the whole breast. Quality assurance in the radiation therapy treatment planning process is essential to ensure accurate dose delivery to the patient. For this purpose, this article compares the results from an anthropomorphic PRESAGE® dosimeter, radiation treatment planning system and from the GAFCHROMIC® EBT2 film.Materials and methodsA breast dosimeter was created and a three-field partial plan was generated in the Pinnacle3 treatment planning system. Dose distribution comparisons were made between Pinnacle3 treatment planning system, GAFCHROMIC® EBT2 film and PRESAGE® dosimeter. Dose–volume histograms (DVHs), gamma maps and line profiles were used to evaluate the comparison.ResultsDVHs of gross tumour volume, clinical tumour volume and planning tumour volume for the PRESAGE® dosimeter and Pinnacle3 treatment planning system shows that both measured and calculated statistics were in agreement, with a value of 97.8% of the prescribed dose. Gamma map comparisons showed that all three distributions passed 95% at the ±3%/±3 mm criteria. Comparisons of isodose line distribution between the PRESAGE® dosimeter, EBT2 film and planning system demonstrated agreement, with an average difference of 1.5%.ConclusionsThis work demonstrated the feasibility of PRESAGE® to function as an anthropomorphic phantom and laid the foundation for research studies in PRESAGE®/optical-computed tomography three-dimensional dosimetry with the most complex anthropomorphic phantoms.


2016 ◽  
Vol 33 (6) ◽  
pp. 1742-1752
Author(s):  
Liyun Chang ◽  
Yi-Chun Du

Purpose – EBT2 film, a convenient quality assurance (QA) tool with high 2D dosimetry resolution, has been widely used in the dosimetry application of radiation therapy with lots of benefits especially its self-development, water equivalent, energy independent and high spatial resolution. However, the higher inhomogeneity between the pixels of EBT2 image, needed to be averaged out according to the traditional method, but it could sacrifice the spatial resolution. To solve this problem, the purpose of this paper is to introduce a Wiener filter (WF) technique applied with a multi-channel (MC) method. Design/methodology/approach – The EBT2 film was calibrated by using the percentage depth dose method combined with the WF technique and a MC method. Then the calculated film doses were compared with the measurement doses by the edge detector with the water phantom. Findings – With high spatial resolution to be 0.2 mm, the results demonstrate that the EBT2 film calibration through both of the WF technique and MC method has higher accuracy (within 2 percent) and lower uncertainty. Originality/value – A new technique of WF with MC method was presented to calibrate the dosimetry system of EBT2 film. With high spatial resolution (0.2 mm), the studies show that the combination of WF technique with MC method can have high accuracy with low noises to calibrate EBT2 film. This method can also be applied to all the QAs of treatment planning of radiation therapy by using the EBT2 film.


Sign in / Sign up

Export Citation Format

Share Document